太阳城集团

  • / 15
  • 下载费用:30 金币  

适用于节点分布稀疏的基于RSS的无源运动跟踪方法.pdf

摘要
申请专利号:

CN201210204317.8

申请日:

2012.06.18

公开号:

CN102711043B

公开日:

2015.01.28

当前法律状态:

授权

有效性:

有权

法律详情: 授权|||实质审查的生效IPC(主分类):H04W 4/02申请日:20120618|||公开
IPC分类号: H04W4/02(2009.01)I; H04W64/00(2009.01)I 主分类号: H04W4/02
申请人: 北京中防视信科技有限公司
发明人: 杨永民; 江峰; 李直
地址: 100085 北京市海淀区上地太阳城集团产业基地上地三街中黎科技园1号楼2层c段
优先权:
专利代理机构: 天津盛理知识产权代理有限公司 12209 代理人: 王利文
PDF完整版下载: PDF下载
法律状态
申请(专利)号:

CN201210204317.8

授权太阳城集团号:

102711043B||||||

法律状态太阳城集团日:

太阳城集团2015.01.28|||2012.11.28|||2012.10.03

法律状态类型:

太阳城集团授权|||实质审查的生效|||公开

摘要

本发明涉及一种适用于节点分布稀疏的基于RSS的无源运动跟踪方法,其特点是:⑴设定N个位置随机的粒子;⑵根据长期测量值模型和短期测量值模型对每个粒子分别计算出当目标处于该粒子的位置时各链路的RSS的长期测量值和短期测量值;⑶将每个粒子的两个RSS值分别与实测的RSS值比较并处理后得到每个位置的粒子对应的权重;⑷对每个位置粒子所对应的权重进行重采样;⑸计算目标位置的估算结果;⑹根据自回归高斯模型更新粒子的位置;⑺返回步骤⑵,重复执行直到跟踪过程结束。本发明设计合理,使传感器网络中每个链路的感知范围得到扩大,保证了在节点分布稀疏的无线传感器网络上的跟踪精度,在不同环境下的稀疏节点网络中均有良好的性能。

权利要求书

1.一种适用于节点分布稀疏的基于RSS的无源运动跟踪方法,其特征在于:
包括以下步骤:
⑴设定N个位置随机的粒子X=[x1,...,xN];
⑵根据长期测量值模型和短期测量值模型对每个粒子分别计算出当目标处
于该粒子的位置时各链路的RSS的长期测量值和短期测量值;
⑶将每个粒子的两个RSS值分别与实测的RSS值比较,根据正态分布模型
计算出权重,然后将两个权重相乘,最后对所有粒子的权重进行归一化,得到
每个位置的粒子对应的权重{W,X};
⑷对每个位置粒子所对应的权重{W,X}进行重采样,将权重小的粒子移到权
重大的粒子所在位置上得到新的粒子位置这时所有粒子权重均为
⑸根据新粒子位置与权重的对应关系,计算目标位置的估算结果;
⑹根据自回归高斯模型更新粒子的位置;
⑺返回步骤⑵,重复执行直到跟踪过程结束。
2.根据权利要求1所述的适用于节点分布稀疏的基于RSS的无源运SS的
无源运动跟踪方法,其特征在于:所述的长期测量值模型μR(n)和短期测量值模
型分别为:
μR(n)=φd(xn)+ωd,n
σ R 2 ( n ) = φ s ( x n ) + ω s , n ]]>
其中,xn是第n个太阳城集团点上人的位置,φd(xn)和φs(xn)分别衍射模型和散射模
型,ωd,n和ωs,n是相互独立的高斯白噪声,其均值均为0,方差分别为和
3.根据权利要求2所述的适用于节点分布稀疏的基于RSS的无源运SS的
无源运动跟踪方法,其特征在于:所述的衍射模型φd(xn)和散射模型φs(xn)分别为:
φd(xn)=Ra(xn)+Re
φ s ( x n ) = c h | | x t - x r | | n d | | x n - x t | | n s | | x n - x r | | n s ]]>
其中,xn是第n个太阳城集团点上人的位置,Re是网络区域中没有目标存在时的RSS
均值;R(xn)是目标位于xn时造成的RSS衰减,cs、cd为常数,nd是传
播指数。
4.根据权利要求1所述的适用于节点分布稀疏的基于RSS的无源运SS的
无源运动跟踪方法,其特征在于:所述步骤⑸计算目标位置的估算结果采用如
下公式得到:
X est = 1 N Σ i = 1 n X i . ]]>
5.根据权利要求1所述的适用于节点分布稀疏的基于RSS的无源运SS的
无源运动跟踪方法,其特征在于:所述的自回归高斯模型为;
xk+1=xk+σvv
其中,xk是第k个离散的时刻目标的位置,为常数,v~N(0,1)。

说明书

适用于节点分布稀疏的基于RSS的无源运动跟踪方法

技术领域

本发明属于无源运动跟踪技术领域,特别涉及一种适用于节点分布稀疏的
基于RSS的无源运动跟踪方法。

背景技术

基于接收信号强度(RSS:Received Signal Strength)的无源运动跟踪
(DFMT:Device-free Motion Tracking)是一种以无线传感器网络为基础的新
兴跟踪技术。RSS值可以从传感器网络中连接不同节点的通信链路上测得。在传
感器网络覆盖的区域里,移动的人或物体会对与其移动线路交叉或是位于其线
路附近的链路上的无线电波产生衰减或散射作用。由于RSS受到这些作用而产
生的相应变化,因此利用RSS的这一特性可以估计移动目标的位置,跟踪系统
连续地收集RSS数据,再根据一定的测量模型和跟踪算法来由这些数据来跟踪
目标的位置。在基于RSS的无源运动跟踪中,目标本身无需携带任何的通信设
备或标记,跟踪中使用的信号载体——无线电波,具有良好的穿透性,并且不
依赖于亮度,能见度等光线条件。基于以上特性,这一技术在灾难救援、军事、
安保等领域有着广泛的应用前景,因为在这些应用场景中,我们都不能确保被
跟踪的目标一定携带了无线通信设备。

在一个无线传感器网络中,节点之间两两形成一个链路,穿过同一区域的
链路数越多,就有越多的RSS数据可以用来计算这一区域里电磁波出现的衰减。
一般意义上来说,使用更多的RSS数据可以有效地去除噪声和其他干扰带来的
数据偏差,从而得到更高的定位和跟踪精度,因此对于基于RSS的无源运动跟
踪,已有的绝大多数方法都将传感器节点摆放得较为密集(平均1~2m2一个节
点),以此来保证有足够多的链路网络覆盖区域。虽然这样做可以得到较高的精
度,但是,与此同时部署节点的工作也将变的更为繁琐和不便,节点的维护成
本也会大大增加,更重要的是,在一些灾难救援等应用场景中,我们通常没有
足够的太阳城集团来部署大量节点,也不可能有足够的已部署好的无线传感器设施,
此时单位面积内节点数和链路数较少,利用的RSS测量数据就会不足,也就无
法满足跟踪的精度。

发明内容

本发明的目的在于克服现有技术的不足,提供一种设计合理、能够满足跟
踪精度的适用于节点分布稀疏的基于RSS的无源运动跟踪方法,。

本发明解决其技术问题是采取以下技术方案实现的:

一种适用于节点分布稀疏的基于RSS的无源运动跟踪方法,包括以下步骤:

⑴设定N个位置随机的粒子X=[x1,...,xN];

⑵根据长期测量值模型和短期测量值模型对每个粒子分别计算出当目标处
于该粒子的位置时各链路的RSS的长期测量值和短期测量值;

⑶将每个粒子的两个RSS值分别与实测的RSS值比较,根据正态分布模型
计算出权重,然后将两个权重相乘,最后对所有粒子的权重进行归一化,得到
每个位置的粒子对应的权重{W,X};

⑷对每个位置粒子所对应的权重{W,X}进行重采样,将权重小的粒子移到权
重大的粒子所在位置上得到新的粒子位置这时所有粒子权重均为

⑸根据新粒子位置与权重的对应关系,计算目标位置的估算结果;

⑹根据自回归高斯模型更新粒子的位置;

⑺返回步骤⑵,重复执行直到跟踪过程结束。

而且,所述的长期测量值模型μR(n)和短期测量值模型分别为:

μR(n)=φd(xn)+ωd,n

σ R 2 ( n ) = φ s ( x n ) + ω s , n ]]>

其中,xn是第n个太阳城集团点上人的位置,φd(xn)和φs(xn)分别衍射模型和散射
模型,ωd,n和ωs,n是相互独立的高斯白噪声,其均值均为0,方差分别为和

而且,所述的衍射模型φd(xn)和散射模型φs(xn)分别为:

φd(xn)=Ra(xn)+Re

φ s ( x n ) = c h | | x t - x r | | n d | | x n - x t | | n s | | x n - x r | | n s ]]>

其中,xn是第n个太阳城集团点上人的位置,Re是网络区域中没有目标存在时的RSS
均值;R(xn)是目标位于xn时造成的RSS衰减,cs、dc为常数,nd是传
播指数。

而且,所述步骤⑸计算目标位置的估算结果采用如下公式得到:

X est = 1 N Σ i = 1 n X i . ]]>

而且,所述的自回归高斯模型为;

xk+1=xk+σvv

其中,xk是第k个离散的时刻目标的位置,为常数,v~N(0,1)。

本发明的优点和积极效果是:

本发明设计合理,根据一般性衍射理论将无线信号的多径分量分为长期测
量值和短期测量值,并分别推导出这两类多径分量与RSS测量值之间的关系,
综合考虑这两类分量影响的测量模型,该模型尽可能地扩大每一条链路的感知
范围,最后利用目标位置的先验和后验太阳城集团,采用粒子滤波算法完成对目标运
动的跟踪,从而使传感器网络中每个链路的感知范围得到扩大,保证了在一个
节点分布稀疏的无线传感器网络上,得到不低于节点密集网络的跟踪精度,在
不同环境下的稀疏节点网络中均有良好的性能。

附图说明

图1为单个链路中无线信号的多径分量随目标移动产生的变化示意图;

图2为目标沿方形路线移动时的跟踪结果示意图;

图3为目标沿方形路线移动时跟踪结果的均方根误差示意图;

图4a为单个链路中RSS测量值、长期测量值和衍射模型理论值的比较示意
图;

图4b为单个链路中RSS测量值、长期测量值的差值、短期测量值和散射模
型理论值的比较示意图;

图5为目标沿之字形路线移动时的跟踪结果示意图;

图6为传感器节点排布不规则时的跟踪结果示意图。

具体实施方式

以下结合附图对本发明实施例做进一步详述:

一种适用于节点分布稀疏的基于RSS的无源运动跟踪方法,在一个节点分
布稀疏的无线传感器网络上,得到不低于节点密集网络的跟踪精度。通常情况
下,当单位面积内节点数和链路数较少时,可以利用的RSS测量数据就会不足,
因此跟踪精度随之下降。为了解决这一问题,我们基于一般性衍射理论(UTD:
Uniform Theory of Diffraction)将无线信号的多径分量分为两类,并分别推
导出这两类多径分量与RSS测量值之间的关系;在此基础上,我们提出了一个
综合考虑这两类分量影响的测量模型,该模型尽可能地扩大每一条链路的感知
范围;最后,我们利用目标位置的先验和后验太阳城集团,采用粒子滤波算法完成对
目标运动的跟踪。

本基于RSS的无源运动跟踪方法,包括以下步骤:

⑴设定N个位置随机的粒子X=[x1,...,xN];

⑵根据长期测量值模型和短期测量值模型对每个粒子分别计算出当目标处
于该粒子的位置时各链路的RSS的长期测量值和短期测量值;

所述的长期测量值模型μR(n)和短期测量值模型分别为:

μR(n)=φd(xn)+ωd,n

σ R 2 ( n ) = φ s ( x n ) + ω s , n ]]>

其中,xn是第n个太阳城集团点上人的位置,φd(xn)和φs(xn)分别衍射模型和散射模型,

ωd,n和ωs,n是相互独立的高斯白噪声,其均值均为0,方差分别为和
所述的衍射模型φd(xn)分别为:

φd(xn)=Ra(xn)+Re

φ s ( x n ) = c h | | x t - x r | | n d | | x n - x t | | n s | | x n - x r | | n s ]]>

其中,xn是第n个太阳城集团点上人的位置,Re是网络区域中没有目标存在时的RSS
均值;R(xn)是目标位于xn时造成的RSS衰减,cs、cd为常数,nd是传
播指数。

⑶将每个粒子的两个RSS值分别与实测的RSS值比较,根据正态分布模型
计算出权重,然后将两个权重相乘,最后对所有粒子的权重进行归一化,得到
每个位置的粒子对应的权重{W,X};

在本步骤中,根据方差为0.5的正态分布模型计算出权重,该方差取值可
以根据实际情况调整。

⑷对每个位置粒子所对应的权重{W,X}进行重采样,将权重小的粒子移到权
重大的粒子所在位置上得到新的粒子位置这时所有粒子权重均为从而
得到新的粒子与权重的对应关系

⑸根据新粒子位置与权重的对应关系,根据下式计算目标位置的估算结
果:

X est = 1 N Σ i = 1 n X i . ]]>

⑹根据以下自回归高斯模型更新粒子的位置:

xk+1=xk+σvv

其中,xk是第k个离散的时刻目标的位置,为常数,v~N(0,1)。

(7)返回步骤(2),重复执行直到跟踪过程结束。

下面对本发明的原理进行说明:

本发明根据一般性衍射理论(UTD)将RSS测量值分解长期测量值μR(n)和短
期测量值,长期测量值和短期测量值反映了RSS值的长期变化和短期变化。

一个位于传感器网络区域内的人,会对某些链路上的电磁波产生吸收、反
射、衍射或散射作用。基于UTDd的研究证明,对于微波和无线电波波段的电磁
波,人体可以被近似地看做一个导电的圆柱体。我们使用基于UTD理论的简化
衰减模型来进行具体分析:

如图1所示,假设一个单独的无线链路和一个在它附近移动的人。两个
节点的位置为xt和xr。在太阳城集团点t1,可视路径(LOS Path:Line Of Sight Path)
没有被挡住,到了太阳城集团点t2,人的位置发生了移动,挡住了可视路径。因此
到达接收节点的无线信号的多径分量可以分为这样两类:一类分量在t1时刻
经由可视路径传播,在t2时刻衍射作用绕过人体传播,它们在本文中被称为
“衍射波”;另一类分量在两个时刻都在人体发生反射、散射,或穿过人体
后到达接收节点,以往的研究大都用散射模型来描述它们的传播,因此它们
在这里被称为“散射波”。

我们用s0(t)表示载波信号,它可以写成如下的复数形式:

s 0 ( t ) = a 0 e j ( ω 0 t + φ 0 ) ]]>

其中a0为信号幅度,ω0为角频率,φ0为相位。我们再用Wd表示衍射波的
集合,Ws表示散射波的集合,则接收节点收到的所有分量叠加的信号s(t)可
以表示为:

s ( t ) = Σ i W d a i s 0 ( t - τ i ) + Σ i W s a i s 0 ( t - τ i ) - - - ( 1 ) ]]>

其中ai和τi为第i个多径分量的幅度衰减(相比载波幅度而言)和太阳城集团延
迟。简便起见,不妨认为接收信号只由两路多径分量组成:衍射分量(所有
衍射波叠加到一起的结果)和散射分量(所有散射波叠加到一起的结果)。这
样s(t)可以表示为:

s ( t ) = A d a 0 e j ω 0 t + Φ d + A s a 0 e j ω 0 t + Φ s ]]>

其中Ad和As为两分量的幅度衰减,Φd和Φs为各自的相位。我们通常所说
的RSS是用分贝(dB)表示的接收信号的功率,而功率一般被认为是信号幅
度的平方。因此RSS测量值RdB可以表示为:

R dB = 10 lg ( P d + P s + 2 P d P s cos Φ ) - - - ( 2 ) ]]>

其中和为两分量的功率衰减;Φ=Φd-Φs为二者的相位差。
由于散射波在散射、反射过程中会有明显的散射损耗,并且由于传播距离更
长有着更大的传播损耗,可以认为P》P。这样(2)式可以通过泰勒级数
展开,取前两项近似表示如下:

R dB = 10 ( lg P d + 2 P s P d cos Φ ) - - - ( 3 ) ]]>

在一段有限的太阳城集团T内,Pd和Ps可以被看作是恒定的,而Φ则在随机地、
迅速地变化。因此RSS测量值可以被看做一个随机过程PdB(t),它的平均值
μR(t)和方差也可以随之计算得出:

R dB = 10 [ lg P d + 2 P s P d cos ( ωt + Φ ) ] - - - ( 4 a ) ]]>

μR(t)=E[RdB(t)]=10lgPd    (4b)

σ R 2 ( t ) = E [ R dB ( t ) - μ R ( t ) ] 2 = 2 P s P d - - - ( 4 c ) ]]>

其中Φ是一个在区间[-ππ]上均匀分布的随机变量。显然,这个随机过
程是遍历的,因此它的统计平均和太阳城集团平均是等价的。然而,在无线传感器
网络中,RSS测量值是以一个固定的太阳城集团间隔Ts在离散的太阳城集团点上采集的,
这样得到的是一个离散太阳城集团函数R(n):

R(n)=RdB(nTs)

这样,RSS的均值和方差将当前太阳城集团前后通过数量有限的一组采样值计
算得出,表达式如下:

μ R ( n ) = 10 lg P d = 1 2 N s + 1 Σ p = - N s N s R ( n + p ) - - - ( 5 a ) ]]>

σ R 2 ( n ) = 2 P s P d = 1 2 N s + 1 Σ p = - N s N s [ R ( n + p ) - μ R ( n ) ] 2 - - - ( 5 b ) ]]>

其中μR(n)和是nTs时刻计算得到的均值和方差;缓冲区的长度,也就
是用来计算均值和方差的采样值个数为2Ns+1。这样,μR(n)和分别代表
了RSS值的长期变化和短期变化。我们分别称之为“长期测量值”和“短期
测量值”。

长期测量值μR(n)和短期测量值的表达式分别为:

μR(n)=φd(xn)+ωd,n

σ R 2 ( n ) = φ s ( x n ) + ω s , n ]]>

其中xn是第n个太阳城集团点上人的位置。φd(xn)和φs(xn)分别表示长期测量值和
短期测量值与人的位置的关系,也就是测量模型本身。ωd,n和ωs,n是相互独立
的高斯白噪声,其均值均为0,方差分别为和我们称φd(xn)为衍射模
型,φs(xn)为散射模型,下面对两个模型分别进行介绍。

1、衍射模型

长期测量值主要反映了无线传感器网络中障碍物造成的阴影效应,已有
的研究已经提出了一些反应阴影效应的模型(如:无限像素模型)。本衍射模
型就是无限像素模型的延伸。在无限像素模型中,φd(xn)可以表达如下:

φd(xn)=R(xn)+Re    (6)

其中Re是网络区域中没有目标存在时的RSS均值;R(xn)是目标位于xn时
造成的RSS衰减,其定义如下:

R ( x n ) = c d exp ( | | x t - x r | | - | | x n - x t | | - | | x n - x r | | σ d ) - - - ( 7 ) ]]>

其中xt和xr是一个链路的发射节点和接收节点的位置坐标,cd是当目标
正好位于两节点的连线上时,即||xt-xr||-||xn-xt||-||xn-xr||=0时的衰减。σd则决
定了衰减值随目标与两节点的相对距离变化的速率。

根据衍射波的定义,对同样的相对距离||xt-xr||-||xn-xt||-||xn-xr||,当链路
长度(发射与接收节点的距离,||xt-xr||)较短时,人体所遮挡的衍射波分量
要多于链路长度较长时遮挡住的分量,对于长期测量值造成的衰减也更多。
这样,经过优化的最终衰减表示如下:

R a ( x n ) = R ( x n ) | | x t - x r | | - - - ( 8 ) ]]>

为了简化测量过程,我们用弗里斯自由空间传播损耗公式来计算(6)式
中的Re,以代替原方法中使用目标不存在时网络中各链路的RSS测量值的平
均值作为Re的做法。修改后的Re表达式如下:

Re=-10nelg||xt-xr||-R1    (9)

其中ne是传播指数,R1是两个单独的节点距离为1米时RSS测量值的平
均值。最后,将(7)式和(8)式结合,衰减模型表达为:

φd(xn)=Ra(xn)+Re    (10)

2、散射模型

短期测量值主要反映了散射效应。在诸如雷达理论和室内无线传播模型
等经典的无线理论中,通常假设散射波在遇到障碍物时只进行方向上的改变,
而没有强度上的衰减。基于这一假设,当传感器节点的天线均匀地向各个水
平方向发射无线信号时,散射波的功率衰减Ps(xn)表达式如下:

P s ( x n ) = c s | | x n - x t | | n s | | x n - x r | | n s - - - ( 11 ) ]]>

其中cs为常数;ns是传播指数,由是一个传播环境决定的常数。基于弗
里斯自由空间传播损耗公式,衍射波的功率衰减可以表示为:

R d ( x n ) = c d | | x t - x r | | n d - - - ( 12 ) ]]>

其中cd为常数;nd是传播指数。我们将无线信号的这两类多径分量的传
播指数设置为两个独立的值,从而更好地适应各种不同的环境。根据(5b)、
(11)和(12)式,最终的散射模型表示如下:

φ s ( x n ) = c h | | x t - x r | | n d | | x n - x t | | n s | | x n - x r | | n s - - - ( 13 ) ]]>

其中 c h = 2 c s c d . ]]>

φd(xn)=Ra(xn)+Re

由于上述测量模型本身并不能直接得到目标的位置,因此,本发明将测量
模型与粒子滤波算法相结合实现基于RSS的无源运动跟踪功能。粒子滤波算
法提供了一个完成目标跟踪的框架,其常被用来解决非线性、非高斯场景下
的最优化问题的数学方法,其与传统的位置估计方法(如卡尔曼滤波算法)
相比,粒子滤波算法不需要任何的局部线性化过程和函数化的估算。在我们
的跟踪方法中,粒子滤波算法利用长期和短期测量值作为后验太阳城集团,利用前
一时刻的目标位置作为先验太阳城集团。最终的估计结果由大量的随机样本(即“粒
子”)计算得出。我们还使用了自回归高斯模型(ARG:Autoregressive 
Gaussian)为目标位置的动态变化建模,表达式为:

xk+1=xk+σvv    (14)

其中xk是第k个离散的时刻目标的位置,σv为常数,v~N(0,1)。

本发明的核心思想是通过对无线传感器网络中多径衰落现象的理论分析,
从而扩大传感器网络中每个链路自身的感知范围。为此,我们搭建了一个节
点分布稀疏的无线传感器网络,它只有4个节点,分布在一个4米×4米的
正方形区域的边缘,如图2、图5和图6所示。每个节点包括一块TI公司生
产的CC2530无线收发芯片,一个全向天线和两节1.2V可充电电池。CC2530
无线收发芯片的物理层协议使用IEEE 802.15.4标准,采用2.4GHz频段进行
收发。另有一个基站节点负责接收所有网络中传输的数据包,并将数据通过
USB串口传输到一台笔记本电脑中。实验平台被放置在一个室外空间,距离
最近的高大建筑物约6米。

数据传输使用了一个简单的令牌环协议来防止传输阻塞。每个节点在程
序编译时被分配了一个唯一的节点ID。两次测量的太阳城集团间隔设定为20毫秒。
粒子滤波算法中粒子的数目N设为1000,σv设为0.15。

我们将4个节点放置在方形区域各条边的中点。首先,我们让目标在距
离区域边缘1米处沿方形路线移动。图2给出了跟踪结果与真实移动路径的
比较结果,从图2中可以看出,估计结果与真实路径基本吻合。

为了更直观地量化分析跟踪精度,我们计算了估算结果的均方根误差。
图3显示了均方根误差随太阳城集团变化的曲线。当目标以图2所示的路径移动时,
平均均方根误差为0.1157米。从图2和图3可以看出,当目标经过路径的拐
角处时,跟踪误差相对较大。这种现象是因为在拐角处,目标的方向在短时
间内变化很大,而这种情况在我们使用的ARG动态模型中概率较低。

为了进行更细致的分析,我们提取率一个单独链路上的RSS值变化。我
们选取了位于网络区域内坐标(0,2)和(2,0)的两个节点间的链路。当
目标在链路附近移动时,链路的RSS值变化十分迅速。从图4(a)中可以看
出,当LOS没有被挡住时,长期测量值基本保持恒定;当目标的路径穿过LOS
时,长期测量值迅速下降。相似地,在图4(b)中,随着目标越来越靠近LOS,
短期测量值的幅度也越来越大。图4(a)和图4(b)中根据测量模型计算得
到的理论值和目标的真实路径得到的链路的理论RSS值几乎重合。

此外,我们还在不同场景下重复进行了上述的跟踪实验。图5是当目标
沿蛇形路线移动时的运动跟踪结果。此场景下的平均均方根误差为0.1332
米。图6是当节点摆放位置不规则时的运动跟踪结果。此场景下的平均均方
根误差为0.1193米。这些结果均表明本跟踪方法对于不同的移动路径和节点
布置格局有着很好的适应性。

需要强调的是,本发明所述的实施例是说明性的,而不是限定性的,因此
本发明并不限于具体实施方式中所述的实施例,凡是由本领域技术人员根据本
发明的技术方案得出的其他实施方式,同样属于本发明保护的范围。

关 键 词:
适用于 节点 分布 稀疏 基于 RSS 无源 运动 跟踪 方法
  专利查询网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
太阳城集团本文
本文标题:适用于节点分布稀疏的基于RSS的无源运动跟踪方法.pdf
链接地址:http://zh228.com/p-6420695.html
太阳城集团我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服客服 - 联系我们

copyright@ 2017-2018 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备17046363号-1 
 


收起
展开
葡京赌场|welcome document.write ('');