太阳城集团

  • / 20
  • 下载费用:30 金币  

基于CAT映射与超混沌LORENZ系统的数字图像加密方法.pdf

摘要
申请专利号:

CN201310048834.5

申请日:

2013.02.07

公开号:

CN103167213B

公开日:

2015.01.07

当前法律状态:

终止

有效性:

无权

法律详情: 未缴年费专利权终止IPC(主分类):H04N 1/32申请日:20130207授权太阳城集团日:20150107终止日期:20160207|||授权|||实质审查的生效IPC(主分类):H04N 1/32申请日:20130207|||公开
IPC分类号: H04N1/32; H04L9/00 主分类号: H04N1/32
申请人: 东北大学
发明人: 付冲; 陈俊鑫
地址: 110819 辽宁省沈阳市和平区文化路3号巷11号
优先权:
专利代理机构: 沈阳东大知识产权代理有限公司 21109 代理人: 梁焱
PDF完整版下载: PDF下载
法律状态
申请(专利)号:

太阳城集团CN201310048834.5

授权太阳城集团号:

|||103167213B||||||

法律状态太阳城集团日:

2017.03.29|||2015.01.07|||2013.07.24|||2013.06.19

法律状态类型:

专利权的终止|||授权|||实质审查的生效|||公开

摘要

太阳城集团本发明一种基于Cat映射与超混沌Lorenz系统的数字图像加密方法,属于图像加密领域,本发明提出的图像加密系统,其密钥长度为247位,高于经典密码学算法DES(56位),AES(基础标准为128位)及IDEA(128位);本发明通过引入与明文相关的密钥流生成机制,使密钥流不仅与密钥相关,而且与明文相关;即使使用相同的扩散密钥,在加密不同的明文图像时,所生成的密钥流也是不同的;因此,加密系统的抗已知/选择明文攻击的能力得到了显著提高。

权利要求书

权利要求书一种基于Cat映射与超混沌Lorenz系统的数字图像加密方法,其特征在于:包括以下步骤:
步骤1:采用广义离散Cat映射对明文图像进行置乱处理,即改变图像中每一像素点的位置;
步骤1‑1:设待加密明文图像的大小为M×N;若M=N,即待加密图像为正方形图像,则执行步骤1‑3;否则执行步骤1‑2;
步骤1‑2:将非正方形图像按从上到下、从左到右的顺序,转换为边长为
<mrow><MSUB><MI>L</MI><MI>s</MI></MSUB><MO>=</MO><MI>ceil</MI><MROW><MO>(</MO><MSQRT><MI>M</MI><MO>×</MO><MI>N</MI></MSQRT><MO>)</MO></MROW><MO>-</MO><MO>-</MO><MO>-</MO><MROW><MO>(</MO><MN>1</MN><MO>)</MO></MROW></MROW>]]&gt;</MATH></MATHS>的正方形图像,其中,函数ceil(x)表示函数的返回值为距离x最近的大于或等于x的整数;<BR>转换后不足的像素点个数R如下:<BR><MATHS id=cmaths0002 num="0002"><MATH><![CDATA[<mrow><MI>R</MI><MO>=</MO><MSUP><MSUB><MI>L</MI><MI>s</MI></MSUB><MN>2</MN></MSUP><MO>-</MO><MI>M</MI><MO>×</MO><MI>N</MI><MO>-</MO><MO>-</MO><MO>-</MO><MROW><MO>(</MO><MN>2</MN><MO>)</MO></MROW></MROW>]]&gt;</MATH></MATHS><BR>不足的像素点用取值范围为[0~255]的随机整数填充;所述的该随机整数采用Logistic混沌映射量化产生;解密时,将填充的像素点删除,即可恢复大小为M×N的明文图像;<BR>步骤1‑3:采用广义离散Cat映射对图像进行置乱,消除相邻像素间的相关性;公式如下:<BR><MATHS id=cmaths0003 num="0003"><MATH><![CDATA[<mrow><MFENCED close="]" open="["><MTABLE><MTR><MTD><MSUP><MI>x</MI><MO>'</MO></MSUP></MTD></MTR><MTR><MTD><MSUP><MI>y</MI><MO>'</MO></MSUP></MTD></MTR></MTABLE></MFENCED><MO>=</MO><MFENCED close="]" open="["><MTABLE><MTR><MTD><MN>1</MN></MTD><MTD><MI>p</MI></MTD></MTR><MTR><MTD><MI>q</MI></MTD><MTD><MI>pq</MI><MO>+</MO><MN>1</MN></MTD></MTR></MTABLE></MFENCED><MFENCED close="]" open="["><MTABLE><MTR><MTD><MI>x</MI></MTD></MTR><MTR><MTD><MI>y</MI></MTD></MTR></MTABLE></MFENCED><MI>mod</MI><MSUB><MI>L</MI><MI>s</MI></MSUB><MO>-</MO><MO>-</MO><MO>-</MO><MROW><MO>(</MO><MN>3</MN><MO>)</MO></MROW></MROW>]]&gt;</MATH></MATHS><BR>其中,x、y分别为变换前的横坐标、纵坐标,x′、y′分别为变换后新的横坐标、纵坐标,(p,q)∈[1,Ls]为控制置乱过程的系统参数,即由加密者设置的置乱密钥;<BR>用于解密的逆Cat映射的定义为<BR><MATHS id=cmaths0004 num="0004"><MATH><![CDATA[<mrow><MFENCED close="]" open="["><MTABLE><MTR><MTD><MSUP><MI>x</MI><MO>'</MO></MSUP></MTD></MTR><MTR><MTD><MSUP><MI>y</MI><MO>'</MO></MSUP></MTD></MTR></MTABLE></MFENCED><MO>=</MO><MFENCED close="]" open="["><MTABLE><MTR><MTD><MI>pq</MI><MO>+</MO><MN>1</MN></MTD><MTD><MO>-</MO><MI>p</MI></MTD></MTR><MTR><MTD><MO>-</MO><MI>q</MI></MTD><MTD><MN>1</MN></MTD></MTR></MTABLE></MFENCED><MFENCED close="]" open="["><MTABLE><MTR><MTD><MI>x</MI></MTD></MTR><MTR><MTD><MI>y</MI></MTD></MTR></MTABLE></MFENCED><MI>mod</MI><MSUB><MI>L</MI><MI>s</MI></MSUB><MO>-</MO><MO>-</MO><MO>-</MO><MROW><MO>(</MO><MN>4</MN><MO>)</MO></MROW></MROW>]]&gt;</MATH></MATHS><BR>步骤1‑4:返回执行步骤1‑3执行2~3次后执行步骤2;<BR>步骤2:采用超混沌Lorenz系统对置乱后的图像进行扩散处理,改变图像中每一点的像素值;<BR>超混沌Lorenz系统公式如下:<BR><MATHS id=cmaths0005 num="0005"><MATH><![CDATA[<mfenced open='{' close='' separators=''><MTABLE><MTR><MTD><MROW><MOVER><MI>x</MI><MO>&amp;CenterDot;</MO></MOVER><MO>=</MO><MI>a</MI><MROW><MO>(</MO><MI>y</MI><MO>-</MO><MI>x</MI><MO>)</MO></MROW></MROW></MTD></MTR><MTR><MTD><MMULTISCRIPTS><MROW><MOVER><MI>y</MI><MO>&amp;CenterDot;</MO></MOVER><MO>=</MO><MI>cx</MI><MO>+</MO><MI>y</MI><MO>-</MO><MI>xz</MI><MO>-</MO><MI>w</MI></MROW></MMULTISCRIPTS></MTD></MTR><MTR><MTD><MOVER><MI>z</MI><MO>&amp;CenterDot;</MO></MOVER><MO>=</MO><MI>xy</MI><MO>-</MO><MI>bz</MI></MTD></MTR><MTR><MTD><MOVER><MI>w</MI><MO>&amp;CenterDot;</MO></MOVER><MO>=</MO><MI>kyz</MI></MTD></MTR></MTABLE><MO></MO><MO>-</MO><MO>-</MO><MO>-</MO><MROW><MO>(</MO><MN>5</MN><MO>)</MO></MROW></MFENCED>]]&gt;</MATH></MATHS><BR>其中,a,b,c为系统参数,k为决定系统状态的控制参数,x,y,z,w为系统变量;分别表示x、y、z、w对&#22826;&#38451;&#22478;&#38598;&#22242;t进行微分;<BR>步骤2‑1:按照从左至右,从上至下的顺序将置乱图像的像素排为一个序列p<MATHS id=cmaths0006 num="0006"><MATH><![CDATA[<mrow><MI>p</MI><MO>=</MO><MO>{</MO><MSUB><MI>p</MI><MN>1</MN></MSUB><MO>,</MO></MROW>]]&gt;</MATH></MATHS><BR><MATHS id=cmaths0007 num="0007"><MATH><![CDATA[<mrow><MSUB><MI>p</MI><MN>2</MN></MSUB><MO>,</MO><MO>.</MO><MO>.</MO><MO>.</MO><MO>,</MO><MSUB><MI>p</MI><MROW><MSUB><MI>L</MI><MI>S</MI></MSUB><MO>×</MO><MSUB><MI>L</MI><MI>S</MI></MSUB></MROW></MSUB><MO>}</MO><MO>;</MO></MROW>]]&gt;</MATH></MATHS><BR>步骤2‑2:设置扩散密钥(x0,y0,z0,w0),采用四阶龙格库塔法求解超混沌Lorenz方程;其中,x0,y0,z0,w0为超混沌Lorenz系统的系统变量初始值;<BR>公式如下:<BR><MATHS id=cmaths0008 num="0008"><MATH><![CDATA[<mrow><MFENCED close="" open="{"><MTABLE><MTR><MTD><MSUB><MI>x</MI><MROW><MI>n</MI><MO>+</MO><MN>1</MN></MROW></MSUB><MO>=</MO><MSUB><MI>x</MI><MI>n</MI></MSUB><MROW><MO>(</MO><MI>h</MI><MO>/</MO><MN>6</MN><MO>)</MO></MROW><MROW><MO>(</MO><MSUB><MI>K</MI><MN>1</MN></MSUB><MO>+</MO><MSUB><MROW><MN>2</MN><MI>K</MI></MROW><MN>2</MN></MSUB><MO>+</MO><MSUB><MROW><MN>2</MN><MI>K</MI></MROW><MN>3</MN></MSUB><MO>+</MO><MSUB><MI>K</MI><MN>4</MN></MSUB><MO>)</MO></MROW></MTD></MTR><MTR><MTD><MSUB><MI>y</MI><MROW><MI>n</MI><MO>+</MO><MN>1</MN></MROW></MSUB><MO>=</MO><MSUB><MI>y</MI><MI>n</MI></MSUB><MO>+</MO><MROW><MO>(</MO><MI>h</MI><MO>/</MO><MN>6</MN><MO>)</MO></MROW><MROW><MO>(</MO><MSUB><MI>L</MI><MN>1</MN></MSUB><MO>+</MO><MSUB><MROW><MN>2</MN><MI>L</MI></MROW><MN>2</MN></MSUB><MO>+</MO><MSUB><MROW><MN>2</MN><MI>L</MI></MROW><MN>3</MN></MSUB><MO>+</MO><MSUB><MI>L</MI><MN>4</MN></MSUB><MO>)</MO></MROW></MTD></MTR><MTR><MTD><MSUB><MI>z</MI><MROW><MI>n</MI><MO>+</MO><MN>1</MN></MROW></MSUB><MO>=</MO><MSUB><MI>z</MI><MI>n</MI></MSUB><MO>+</MO><MROW><MO>(</MO><MI>h</MI><MO>/</MO><MN>6</MN><MO>)</MO></MROW><MROW><MO>(</MO><MSUB><MI>M</MI><MN>1</MN></MSUB><MO>+</MO><MSUB><MROW><MN>2</MN><MI>M</MI></MROW><MN>2</MN></MSUB><MO>+</MO><MSUB><MROW><MN>2</MN><MI>M</MI></MROW><MN>3</MN></MSUB><MO>+</MO><MSUB><MI>M</MI><MN>4</MN></MSUB><MO>)</MO></MROW></MTD></MTR><MTR><MTD><MSUB><MI>w</MI><MROW><MI>n</MI><MO>+</MO><MN>1</MN></MROW></MSUB><MO>=</MO><MSUB><MI>w</MI><MI>n</MI></MSUB><MO>+</MO><MROW><MO>(</MO><MI>h</MI><MO>/</MO><MN>6</MN><MO>)</MO></MROW><MROW><MO>(</MO><MSUB><MI>N</MI><MN>1</MN></MSUB><MO>+</MO><MSUB><MROW><MN>2</MN><MI>N</MI></MROW><MN>2</MN></MSUB><MO>+</MO><MSUB><MROW><MN>2</MN><MI>N</MI></MROW><MN>3</MN></MSUB><MO>+</MO><MSUB><MI>N</MI><MN>4</MN></MSUB><MO>)</MO></MROW></MTD></MTR></MTABLE></MFENCED><MO>-</MO><MO>-</MO><MO>-</MO><MROW><MO>(</MO><MN>6</MN><MO>)</MO></MROW></MROW>]]&gt;</MATH></MATHS><BR>其中,<BR><MATHS id=cmaths0009 num="0009"><MATH><![CDATA[<mrow><MFENCED close="" open="{"><MTABLE><MTR><MTD><MSUB><MI>K</MI><MI>j</MI></MSUB><MO>=</MO><MI>a</MI><MROW><MO>(</MO><MSUB><MI>y</MI><MI>n</MI></MSUB><MO>-</MO><MSUB><MI>x</MI><MI>n</MI></MSUB><MO>)</MO></MROW></MTD></MTR><MTR><MTD><MSUB><MI>L</MI><MI>j</MI></MSUB><MO>=</MO><MSUB><MI>cx</MI><MI>n</MI></MSUB><MO>+</MO><MSUB><MI>y</MI><MI>n</MI></MSUB><MO>-</MO><MSUB><MI>x</MI><MI>n</MI></MSUB><MSUB><MI>z</MI><MI>n</MI></MSUB><MO>-</MO><MSUB><MI>w</MI><MI>n</MI></MSUB></MTD></MTR><MTR><MTD><MSUB><MI>M</MI><MI>j</MI></MSUB><MO>=</MO><MSUB><MI>x</MI><MI>n</MI></MSUB><MSUB><MI>y</MI><MI>n</MI></MSUB><MO>-</MO><MSUB><MI>bz</MI><MI>n</MI></MSUB></MTD></MTR><MTR><MTD><MSUB><MI>N</MI><MI>j</MI></MSUB><MO>=</MO><MSUB><MI>ky</MI><MI>n</MI></MSUB><MSUB><MI>z</MI><MI>n</MI></MSUB></MTD></MTR></MTABLE></MFENCED><MO>-</MO><MO>-</MO><MO>-</MO><MROW><MO>(</MO><MN>7</MN><MO>)</MO></MROW></MROW>]]&gt;</MATH></MATHS><BR>(j=1),<BR><MATHS id=cmaths0010 num="0010"><MATH><![CDATA[<mrow><MFENCED close="" open="{"><MTABLE><MTR><MTD><MSUB><MI>K</MI><MI>j</MI></MSUB><MO>=</MO><MI>a</MI><MO>[</MO><MROW><MO>(</MO><MSUB><MI>y</MI><MI>n</MI></MSUB><MO>+</MO><MSUB><MI>hL</MI><MROW><MI>j</MI><MO>-</MO><MN>1</MN></MROW></MSUB><MO>/</MO><MN>2</MN><MO>)</MO></MROW><MO>-</MO><MROW><MO>(</MO><MSUB><MI>x</MI><MI>n</MI></MSUB><MO>+</MO><MSUB><MI>hK</MI><MROW><MI>j</MI><MO>-</MO><MN>1</MN></MROW></MSUB><MO>/</MO><MN>2</MN><MO>)</MO></MROW><MO>]</MO></MTD></MTR><MTR><MTD><MSUB><MI>L</MI><MI>j</MI></MSUB><MO>=</MO><MI>c</MI><MROW><MO>(</MO><MSUB><MI>x</MI><MI>n</MI></MSUB><MO>+</MO><MSUB><MI>hK</MI><MROW><MI>j</MI><MO>-</MO><MN>1</MN></MROW></MSUB><MO>/</MO><MN>2</MN><MO>)</MO></MROW><MO>+</MO><MROW><MO>(</MO><MSUB><MI>y</MI><MI>n</MI></MSUB><MO>+</MO><MSUB><MI>hL</MI><MROW><MI>j</MI><MO>-</MO><MN>1</MN></MROW></MSUB><MO>/</MO><MN>2</MN><MO>)</MO></MROW><MO>-</MO><MROW><MO>(</MO><MSUB><MI>x</MI><MI>n</MI></MSUB><MO>+</MO><MSUB><MI>hK</MI><MROW><MI>j</MI><MO>-</MO><MN>1</MN></MROW></MSUB><MO>/</MO><MN>2</MN><MO>)</MO></MROW><MROW><MO>(</MO><MSUB><MI>z</MI><MI>n</MI></MSUB><MO>+</MO><MSUB><MI>hM</MI><MROW><MI>j</MI><MO>-</MO><MN>1</MN></MROW></MSUB><MO>/</MO><MN>2</MN><MO>)</MO></MROW><MO>-</MO><MROW><MO>(</MO><MSUB><MI>w</MI><MI>n</MI></MSUB><MO>+</MO><MSUB><MI>hN</MI><MROW><MI>j</MI><MO>-</MO><MN>1</MN></MROW></MSUB><MO>/</MO><MN>2</MN><MO>)</MO></MROW></MTD></MTR><MTR><MTD><MSUB><MI>M</MI><MI>j</MI></MSUB><MO>=</MO><MROW><MO>(</MO><MSUB><MI>x</MI><MI>n</MI></MSUB><MO>+</MO><MSUB><MI>hK</MI><MROW><MI>j</MI><MO>-</MO><MN>1</MN></MROW></MSUB><MO>/</MO><MN>2</MN><MO>)</MO></MROW><MROW><MO>(</MO><MSUB><MI>y</MI><MI>n</MI></MSUB><MO>+</MO><MSUB><MI>hL</MI><MROW><MI>j</MI><MO>-</MO><MN>1</MN></MROW></MSUB><MO>/</MO><MN>2</MN><MO>)</MO></MROW><MO>-</MO><MI>b</MI><MROW><MO>(</MO><MSUB><MI>z</MI><MI>n</MI></MSUB><MO>+</MO><MSUB><MI>hM</MI><MROW><MI>j</MI><MO>-</MO><MN>1</MN></MROW></MSUB><MO>/</MO><MN>2</MN><MO>)</MO></MROW></MTD></MTR><MTR><MTD><MSUB><MI>N</MI><MI>j</MI></MSUB><MO>=</MO><MI>k</MI><MROW><MO>(</MO><MSUB><MI>y</MI><MI>n</MI></MSUB><MO>+</MO><MSUB><MI>hL</MI><MROW><MI>j</MI><MO>-</MO><MN>1</MN></MROW></MSUB><MO>/</MO><MN>2</MN><MO>)</MO></MROW><MROW><MO>(</MO><MSUB><MI>z</MI><MI>n</MI></MSUB><MO>+</MO><MSUB><MI>hM</MI><MROW><MI>j</MI><MO>-</MO><MN>1</MN></MROW></MSUB><MO>/</MO><MN>2</MN><MO>)</MO></MROW></MTD></MTR></MTABLE></MFENCED><MO>-</MO><MO>-</MO><MO>-</MO><MROW><MO>(</MO><MN>8</MN><MO>)</MO></MROW></MROW>]]&gt;</MATH></MATHS><BR>(j=2,3),<BR><MATHS id=cmaths0011 num="0011"><MATH><![CDATA[<mrow><MFENCED close="" open="{"><MTABLE><MTR><MTD><MSUB><MI>K</MI><MI>j</MI></MSUB><MO>=</MO><MI>a</MI><MO>[</MO><MROW><MO>(</MO><MSUB><MI>y</MI><MI>n</MI></MSUB><MO>+</MO><MSUB><MI>hL</MI><MROW><MI>j</MI><MO>-</MO><MN>1</MN></MROW></MSUB><MO>)</MO></MROW><MO>-</MO><MROW><MO>(</MO><MSUB><MI>x</MI><MI>n</MI></MSUB><MO>+</MO><MSUB><MI>hK</MI><MROW><MI>j</MI><MO>-</MO><MN>1</MN></MROW></MSUB><MO>)</MO></MROW><MO>]</MO></MTD></MTR><MTR><MTD><MSUB><MI>L</MI><MI>j</MI></MSUB><MO>=</MO><MI>c</MI><MROW><MO>(</MO><MSUB><MI>x</MI><MI>n</MI></MSUB><MO>+</MO><MSUB><MI>hK</MI><MROW><MI>j</MI><MO>-</MO><MN>1</MN></MROW></MSUB><MO>)</MO></MROW><MO>+</MO><MROW><MO>(</MO><MSUB><MI>y</MI><MI>n</MI></MSUB><MO>+</MO><MSUB><MI>hL</MI><MROW><MI>j</MI><MO>-</MO><MN>1</MN></MROW></MSUB><MO>)</MO></MROW><MO>-</MO><MROW><MO>(</MO><MSUB><MI>x</MI><MI>n</MI></MSUB><MO>+</MO><MSUB><MI>hK</MI><MROW><MI>j</MI><MO>-</MO><MN>1</MN></MROW></MSUB><MO>)</MO></MROW><MROW><MO>(</MO><MSUB><MI>z</MI><MI>n</MI></MSUB><MO>+</MO><MSUB><MI>hM</MI><MROW><MI>j</MI><MO>-</MO><MN>1</MN></MROW></MSUB><MO>)</MO></MROW><MO>-</MO><MROW><MO>(</MO><MSUB><MI>w</MI><MI>n</MI></MSUB><MO>+</MO><MSUB><MI>hN</MI><MROW><MI>j</MI><MO>-</MO><MN>1</MN></MROW></MSUB><MO>)</MO></MROW></MTD></MTR><MTR><MTD><MSUB><MI>M</MI><MI>j</MI></MSUB><MO>=</MO><MROW><MO>(</MO><MSUB><MI>x</MI><MI>n</MI></MSUB><MO>+</MO><MSUB><MI>hK</MI><MROW><MI>j</MI><MO>-</MO><MN>1</MN></MROW></MSUB><MO>)</MO></MROW><MROW><MO>(</MO><MSUB><MI>y</MI><MI>n</MI></MSUB><MO>+</MO><MSUB><MI>hL</MI><MROW><MI>j</MI><MO>-</MO><MN>1</MN></MROW></MSUB><MO>)</MO></MROW><MO>-</MO><MI>b</MI><MROW><MO>(</MO><MSUB><MI>z</MI><MI>n</MI></MSUB><MO>+</MO><MSUB><MI>hM</MI><MROW><MI>j</MI><MO>-</MO><MN>1</MN></MROW></MSUB><MO>)</MO></MROW></MTD></MTR><MTR><MTD><MSUB><MI>N</MI><MI>j</MI></MSUB><MO>=</MO><MI>k</MI><MROW><MO>(</MO><MSUB><MI>y</MI><MI>n</MI></MSUB><MO>+</MO><MSUB><MI>hL</MI><MROW><MI>j</MI><MO>-</MO><MN>1</MN></MROW></MSUB><MO>)</MO></MROW><MROW><MO>(</MO><MSUB><MI>z</MI><MI>n</MI></MSUB><MO>+</MO><MSUB><MI>hM</MI><MROW><MI>j</MI><MO>-</MO><MN>1</MN></MROW></MSUB><MO>)</MO></MROW></MTD></MTR></MTABLE></MFENCED><MO>-</MO><MO>-</MO><MO>-</MO><MROW><MO>(</MO><MN>9</MN><MO>)</MO></MROW></MROW>]]&gt;</MATH></MATHS><BR>(j=4),<BR>其中,xn,yn,zn,wn表示第n次迭代的系统变量值,h为步长;基于以上方法代入公式(5)N0次,N0≥200,使系统充分进入混沌状态;<BR>步骤2‑3:继续代入公式(5),利用公式(10)对超混沌Lorenz系统的4个系统变量的当前值φn进行量化,得到4个密钥流元素<BR><MATHS id=cmaths0012 num="0012"><MATH><![CDATA[<mrow><MSUB><MI>k</MI><MSUB><MI>φ</MI><MI>n</MI></MSUB></MSUB><MO>=</MO><MI>mod</MI><MO>[</MO><MI>round</MI><MROW><MO>(</MO><MROW><MO>(</MO><MI>abs</MI><MROW><MO>(</MO><MSUB><MI>φ</MI><MI>n</MI></MSUB><MO>)</MO></MROW><MO>-</MO><MI>floor</MI><MROW><MO>(</MO><MI>abs</MI><MROW><MO>(</MO><MSUB><MI>φ</MI><MI>n</MI></MSUB><MO>)</MO></MROW><MO>)</MO></MROW><MO>)</MO></MROW><MO>×</MO><MSUP><MN>10</MN><MN>14</MN></MSUP><MO>)</MO></MROW><MO>,</MO><MI>L</MI><MO>]</MO><MO>,</MO><MROW><MO>(</MO><MSUB><MI>φ</MI><MI>n</MI></MSUB><MO>&amp;Element;</MO><MO>{</MO><MSUB><MI>x</MI><MI>n</MI></MSUB><MO>,</MO><MSUB><MI>y</MI><MI>n</MI></MSUB><MO>,</MO><MSUB><MI>z</MI><MI>n</MI></MSUB><MO>,</MO><MSUB><MI>w</MI><MI>n</MI></MSUB><MO>}</MO><MO>)</MO></MROW><MO>-</MO><MO>-</MO><MO>-</MO><MROW><MO>(</MO><MN>10</MN><MO>)</MO></MROW></MROW>]]&gt;</MATH></MATHS><BR>其中,abs(x)函数为返回x的绝对值,round(x)函数为返回x的四舍五入值,floor(x)函数表示返回距离x最近的小于或等于x的整数;mod(x,y)表示返回x除以y的余数;L为图像的灰度级别;<BR>步骤2‑4:采用集合Ω表示所有的排列情况;由于包含4个元素,因而其共有4!=24种排列情况;根据当前待加密的4个明文像素点的前一个点的明文值p',选取集合中的第X个排列情况,其中1≤X≤24;<BR>X由以下公式确定:<BR>X=p'%24+1&nbsp;&nbsp;&nbsp;&nbsp;(11)<BR>其中,p'的初始值可设为一取值在[0,255]间的整型常量;<BR>步骤2‑5:采用步骤2‑4选取的密钥流元素对4个明文像素实施加密;<BR>加密公式为:<BR><MATHS id=cmaths0013 num="0013"><MATH><![CDATA[<mrow><MFENCED close="" open="{"><MTABLE><MTR><MTD><MSUB><MI>c</MI><MROW><MN>4</MN><MO>×</MO><MROW><MO>(</MO><MI>n</MI><MO>-</MO><MN>1</MN><MO>)</MO></MROW><MO>+</MO><MN>1</MN></MROW></MSUB><MO>=</MO><MSUB><MI>k</MI><MSUB><MI>x</MI><MI>n</MI></MSUB></MSUB><MO>'</MO><MO>&amp;CirclePlus;</MO><MO>{</MO><MO>[</MO><MSUB><MI>p</MI><MROW><MN>4</MN><MO>×</MO><MROW><MO>(</MO><MI>n</MI><MO>-</MO><MN>1</MN><MO>)</MO></MROW><MO>+</MO><MN>1</MN></MROW></MSUB><MO>+</MO><MSUB><MI>k</MI><MSUB><MI>x</MI><MI>n</MI></MSUB></MSUB><MO>'</MO><MO>]</MO><MI>mod</MI><MI>L</MI><MO>}</MO><MO>&amp;CirclePlus;</MO><MSUB><MI>c</MI><MROW><MN>4</MN><MO>×</MO><MROW><MO>(</MO><MI>n</MI><MO>-</MO><MN>1</MN><MO>)</MO></MROW></MROW></MSUB></MTD></MTR><MTR><MTD><MSUB><MI>c</MI><MROW><MN>4</MN><MO>×</MO><MROW><MO>(</MO><MI>n</MI><MO>-</MO><MN>1</MN><MO>)</MO></MROW><MO>+</MO><MN>2</MN></MROW></MSUB><MO>=</MO><MSUB><MI>k</MI><MSUB><MI>y</MI><MI>n</MI></MSUB></MSUB><MO>'</MO><MO>&amp;CirclePlus;</MO><MO>{</MO><MO>[</MO><MSUB><MI>p</MI><MROW><MN>4</MN><MO>×</MO><MROW><MO>(</MO><MI>n</MI><MO>-</MO><MN>1</MN><MO>)</MO></MROW><MO>+</MO><MN>2</MN></MROW></MSUB><MO>+</MO><MSUB><MI>k</MI><MSUB><MI>y</MI><MI>n</MI></MSUB></MSUB><MO>'</MO><MO>]</MO><MI>mod</MI><MI>L</MI><MO>}</MO><MO>&amp;CirclePlus;</MO><MSUB><MI>c</MI><MROW><MN>4</MN><MO>×</MO><MROW><MO>(</MO><MI>n</MI><MO>-</MO><MN>1</MN><MO>)</MO></MROW><MO>+</MO><MN>1</MN></MROW></MSUB></MTD></MTR><MTR><MTD><MSUB><MI>c</MI><MROW><MN>4</MN><MO>×</MO><MROW><MO>(</MO><MI>n</MI><MO>-</MO><MN>1</MN><MO>)</MO></MROW><MO>+</MO><MN>3</MN></MROW></MSUB><MO>=</MO><MSUB><MI>k</MI><MSUB><MI>z</MI><MI>n</MI></MSUB></MSUB><MO>'</MO><MO>&amp;CirclePlus;</MO><MO>{</MO><MO>[</MO><MSUB><MI>p</MI><MROW><MN>4</MN><MO>×</MO><MROW><MO>(</MO><MI>n</MI><MO>-</MO><MN>1</MN><MO>)</MO></MROW><MO>+</MO><MN>3</MN></MROW></MSUB><MO>+</MO><MSUB><MI>k</MI><MSUB><MI>z</MI><MI>n</MI></MSUB></MSUB><MO>'</MO><MO>]</MO><MI>mod</MI><MI>L</MI><MO>}</MO><MO>&amp;CirclePlus;</MO><MSUB><MI>c</MI><MROW><MN>4</MN><MO>×</MO><MROW><MO>(</MO><MI>n</MI><MO>-</MO><MN>1</MN><MO>)</MO></MROW><MO>+</MO><MN>2</MN></MROW></MSUB></MTD></MTR><MTR><MTD><MSUB><MI>c</MI><MROW><MN>4</MN><MO>×</MO><MROW><MO>(</MO><MI>n</MI><MO>-</MO><MN>1</MN><MO>)</MO></MROW><MO>+</MO><MN>4</MN></MROW></MSUB><MO>=</MO><MSUB><MI>k</MI><MSUB><MI>w</MI><MI>n</MI></MSUB></MSUB><MO>'</MO><MO>&amp;CirclePlus;</MO><MO>{</MO><MO>[</MO><MSUB><MI>p</MI><MROW><MN>4</MN><MO>×</MO><MROW><MO>(</MO><MI>n</MI><MO>-</MO><MN>1</MN><MO>)</MO></MROW><MO>+</MO><MN>4</MN></MROW></MSUB><MO>+</MO><MSUB><MI>k</MI><MSUB><MI>w</MI><MI>n</MI></MSUB></MSUB><MO>'</MO><MO>]</MO><MI>mod</MI><MI>L</MI><MO>}</MO><MO>&amp;CirclePlus;</MO><MSUB><MI>c</MI><MROW><MN>4</MN><MO>×</MO><MROW><MO>(</MO><MI>n</MI><MO>-</MO><MN>1</MN><MO>)</MO></MROW><MO>+</MO><MN>3</MN></MROW></MSUB></MTD></MTR></MTABLE></MFENCED><MO>-</MO><MO>-</MO><MO>-</MO><MROW><MO>(</MO><MN>12</MN><MO>)</MO></MROW></MROW>]]&gt;</MATH></MATHS><BR>其中,n=1,2,...表示对超混沌Lorenz系统的第n次迭代,p4×(n‑1)+m,c4×(n1)+m分别为当前操作的4个明文像素值和输出的4个密文像素值,m=1,2,3,4;c4×(n‑1)+m‑1为当前操作的像素点对应的前一个已加密点的密文像素值,其初始值c0为一取值在[0,255]间的整型常量,代表按位异或操作;若剩余待加密像素点不足4个,则只加密剩余的像素点即可;<BR>用于解密的反变换为<BR><MATHS id=cmaths0014 num="0014"><MATH><![CDATA[<mrow><MFENCED close="" open="{"><MTABLE><MTR><MTD><MSUB><MI>p</MI><MROW><MN>4</MN><MO>×</MO><MROW><MO>(</MO><MI>n</MI><MO>-</MO><MN>1</MN><MO>)</MO></MROW><MO>+</MO><MN>1</MN></MROW></MSUB><MO>=</MO><MO>[</MO><MSUB><MI>k</MI><MSUB><MI>x</MI><MI>n</MI></MSUB></MSUB><MO>'</MO><MO>&amp;CirclePlus;</MO><MSUB><MI>c</MI><MROW><MN>4</MN><MO>×</MO><MROW><MO>(</MO><MI>n</MI><MO>-</MO><MN>1</MN><MO>)</MO></MROW><MO>+</MO><MN>1</MN></MROW></MSUB><MO>&amp;CirclePlus;</MO><MSUB><MI>c</MI><MROW><MN>4</MN><MO>×</MO><MROW><MO>(</MO><MI>n</MI><MO>-</MO><MN>1</MN><MO>)</MO></MROW></MROW></MSUB><MO>+</MO><MI>L</MI><MO>-</MO><MSUB><MI>k</MI><MSUB><MI>x</MI><MI>n</MI></MSUB></MSUB><MO>'</MO><MO>]</MO><MI>mod</MI><MI>L</MI></MTD></MTR><MTR><MTD><MSUB><MI>p</MI><MROW><MN>4</MN><MO>×</MO><MROW><MO>(</MO><MI>n</MI><MO>-</MO><MN>1</MN><MO>)</MO></MROW><MO>+</MO><MN>2</MN></MROW></MSUB><MO>=</MO><MO>[</MO><MSUB><MI>k</MI><MSUB><MI>y</MI><MI>n</MI></MSUB></MSUB><MO>'</MO><MO>&amp;CirclePlus;</MO><MSUB><MI>c</MI><MROW><MN>4</MN><MO>×</MO><MROW><MO>(</MO><MI>n</MI><MO>-</MO><MN>1</MN><MO>)</MO></MROW><MO>+</MO><MN>2</MN></MROW></MSUB><MO>&amp;CirclePlus;</MO><MSUB><MI>c</MI><MROW><MN>4</MN><MO>×</MO><MROW><MO>(</MO><MI>n</MI><MO>-</MO><MN>1</MN><MO>)</MO></MROW><MO>+</MO><MN>1</MN></MROW></MSUB><MO>+</MO><MI>L</MI><MO>-</MO><MSUB><MI>k</MI><MSUB><MI>y</MI><MI>n</MI></MSUB></MSUB><MO>'</MO><MO>]</MO><MI>mod</MI><MI>L</MI></MTD></MTR><MTR><MTD><MSUB><MI>p</MI><MROW><MN>4</MN><MO>×</MO><MROW><MO>(</MO><MI>n</MI><MO>-</MO><MN>1</MN><MO>)</MO></MROW><MO>+</MO><MN>2</MN></MROW></MSUB><MO>=</MO><MO>[</MO><MSUB><MI>k</MI><MSUB><MI>y</MI><MI>n</MI></MSUB></MSUB><MO>'</MO><MO>&amp;CirclePlus;</MO><MSUB><MI>c</MI><MROW><MN>4</MN><MO>×</MO><MROW><MO>(</MO><MI>n</MI><MO>-</MO><MN>1</MN><MO>)</MO></MROW><MO>+</MO><MN>2</MN></MROW></MSUB><MO>&amp;CirclePlus;</MO><MSUB><MI>c</MI><MROW><MN>4</MN><MO>×</MO><MROW><MO>(</MO><MI>n</MI><MO>-</MO><MN>1</MN><MO>)</MO></MROW><MO>+</MO><MN>1</MN></MROW></MSUB><MO>+</MO><MI>L</MI><MO>-</MO><MSUB><MI>k</MI><MSUB><MI>y</MI><MI>n</MI></MSUB></MSUB><MO>'</MO><MO>]</MO><MI>mod</MI><MI>L</MI></MTD></MTR><MTR><MTD><MSUB><MI>p</MI><MROW><MN>4</MN><MO>×</MO><MROW><MO>(</MO><MI>n</MI><MO>-</MO><MN>1</MN><MO>)</MO></MROW><MO>+</MO><MN>4</MN></MROW></MSUB><MO>=</MO><MO>[</MO><MSUB><MI>k</MI><MSUB><MI>w</MI><MI>n</MI></MSUB></MSUB><MO>'</MO><MO>&amp;CirclePlus;</MO><MSUB><MI>c</MI><MROW><MN>4</MN><MO>×</MO><MROW><MO>(</MO><MI>n</MI><MO>-</MO><MN>1</MN><MO>)</MO></MROW><MO>+</MO><MN>4</MN></MROW></MSUB><MO>&amp;CirclePlus;</MO><MSUB><MI>c</MI><MROW><MN>4</MN><MO>×</MO><MROW><MO>(</MO><MI>n</MI><MO>-</MO><MN>1</MN><MO>)</MO></MROW><MO>+</MO><MN>3</MN></MROW></MSUB><MO>+</MO><MI>L</MI><MO>-</MO><MSUB><MI>k</MI><MSUB><MI>w</MI><MI>n</MI></MSUB></MSUB><MO>'</MO><MO>]</MO><MI>mod</MI><MI>L</MI></MTD></MTR></MTABLE></MFENCED><MO>-</MO><MO>-</MO><MO>-</MO><MROW><MO>(</MO><MN>13</MN><MO>)</MO></MROW></MROW>]]&gt;</MATH></MATHS><BR>步骤2‑6:返回执行步骤2‑3,直到序列p中的所有像素点按照从左至右的顺序完全加密;<BR>步骤2‑7:将加密完的密文像素序列按照从左至右的顺序重新排为Ls×Ls的矩阵形式,从而得到密文图像;<BR>&#22826;&#38451;&#22478;&#38598;&#22242;步骤3:根据加密强度要求,进行多轮加密,即反复执行步骤1~步骤2;所述加密强度是指抗统计攻击能力、抗已知明文攻击、抗选择明文攻击能力以及抗差分攻击能力。</p></div> </div> </div> <div class="zlzy"> <div class="zltitle">说明书</div> <div class="gdyy"> <div class="gdyy_show"><p>说明书基于Cat映射与超混沌Lorenz系统的数字图像加密方法 <BR>技术领域 <BR>本发明属于图像加密领域,具体涉及一种基于Cat映射与超混沌Lorenz系统的数字图像加密方法。 <BR>背景技术 <BR>人类接受的&#22826;&#38451;&#22478;&#38598;&#22242;有70%以上来自视觉,其中包括图像、图形(动画)、视频、文本等。图像&#22826;&#38451;&#22478;&#38598;&#22242;形象、生动,是人类广为利用、不可或缺的表达&#22826;&#38451;&#22478;&#38598;&#22242;的重要手段之一。近年来,伴随着多媒体与计算机网络技术的飞速发展,数字图像作为最直观的&#22826;&#38451;&#22478;&#38598;&#22242;载体已成为人们进行&#22826;&#38451;&#22478;&#38598;&#22242;交流的重要手段,越来越多的数字图像在以Internet、无线网络等为代表的开放性网络中传播,极大的方便了&#22826;&#38451;&#22478;&#38598;&#22242;的访问与共享。与此同时,由于图像&#22826;&#38451;&#22478;&#38598;&#22242;涉及商业、金融、医疗、科研、军事、政治等众多领域的敏感&#22826;&#38451;&#22478;&#38598;&#22242;,其在开放网络环境下的传输存在着巨大的安全隐患,经常会吸引各种人为的攻击,包括&#22826;&#38451;&#22478;&#38598;&#22242;的非法窃取、复制与发布等,给&#22826;&#38451;&#22478;&#38598;&#22242;拥有者造成巨大的损失。目前,&#22826;&#38451;&#22478;&#38598;&#22242;安全不单单是关系到个人隐私的问题,也是关系到商业机密和企业生存的问题,更是关系到军事机密和国家安全的重要问题。 <BR>图像&#22826;&#38451;&#22478;&#38598;&#22242;安全是集数学、密码学、&#22826;&#38451;&#22478;&#38598;&#22242;学及计算机科学于一体的多学科交叉性研究课题。其核心问题之一是密码理论及其应用,通过加密变换,将可读的文件和图像变换成不可理解的伪随机&#22826;&#38451;&#22478;&#38598;&#22242;,从而起到保护图像和&#22826;&#38451;&#22478;&#38598;&#22242;的作用。当前&#22826;&#38451;&#22478;&#38598;&#22242;安全的主流密码学理论均以基于算法复杂性理论为特征,典型代表有DES(数据加密标准)、AES(高级加密标准)、IDEA算法、RSA算法以及椭圆曲线密码算法ECC等。然而,在设计数字图像加密算法时,必须考虑其特殊性。与普通文字&#22826;&#38451;&#22478;&#38598;&#22242;相比,数字图像具有容量大、冗余度高、可理解性好等特点,而上述通用经典加密算法并未考虑到图像&#22826;&#38451;&#22478;&#38598;&#22242;的这些特殊性,因此并不适合于图像加密,尤其近年来随着宽带网络应用的普及,经典算法在加密速度上越来越不能满足日益增长的实时图像安全传输的需求。 <BR>近年来混沌理论的发展为密码学提供了一个全新的思路。自上世纪90年代中期以来,很多学者发现混沌学与密码学之间存在着天然的联系。混沌系统具有初值与系统参数极端敏感性、遍历性、轨道不可预测性以及良好的伪随机性等一系列特性,而一个好的密码系统应满足如下条件:①把明文变换为尽可能随机的密文。即密文中应没有任何确定的模式,这通常是由某个基本的加密函数的迭代来实现的;②加密算法对明文具有高度敏感性,即两个稍有差异的明文应产生完全不同的密文;③加密系统对密钥有高度敏感性。即当稍有差异的密钥应用于相同的明文时,会产生完全不同的密文。混沌的这些特性正好能够满足密码系统的要求,因而近十年来混沌密码学得到了广泛的研究,已成为现代密码学的一个重要分支,具有极大的发展潜力。 <BR>基于混沌动力学构造的加密系统,提供了安全性与加密效率的一个良好的平衡,其既具有很高的安全性保证,又具有软、硬件实现简单,速度较快的特点,特别适合于对数据量较大的数字图像进行加密,实现数字图像的实时、安全传输。目前,混沌图像加密算法已成为图像&#22826;&#38451;&#22478;&#38598;&#22242;安全的主流技术和研究热点。1998年,美国学者Fridrich发表了混沌图像加密的奠基性文章“Symmetric&nbsp;ciphers&nbsp;based&nbsp;on&nbsp;two‑dimensional&nbsp;chaotic&nbsp;maps”,在该文中首次提出了一种通用的混沌数字图像加密架构:置乱—扩散架构(Confusion—Diffusion),如图1所示,加密系统由两个迭代模块组成,分别实现消除相邻像素间的相关性和改变图像的统计特性。在置乱阶段,图像中每个像素点的位置以一种伪随机方式被打乱。置乱操作通常基于ArnoldCat映射,Baker映射以及Standard映射三种2D保面积可逆混沌映射实现。在置乱过程中,像素值保持不变。在扩散阶段,每一点的像素值按从上至下、从左至右的顺序依次被改变并且对某个像素值的改变,依赖于该像素点所有前面已加密的像素值的累积效应。因此一个像素值的微小改变,可有效的扩散到图像中后续的所有像素,从而使加密系统具有较强的抗差分攻击能力。用于扩散的密钥流通过混沌映射迭代与量化产生,像素值的改变以异或运算为基础加以实现。加密系统的密钥为控制置乱—扩散过程的混沌映射的初始参数与初始值。为了达到充分消除相邻像素间的相关性的目的,置乱过程共迭代m轮(m≥1)。整体置乱—扩散操作可根据安全性需求执行n轮(n≥1)。 <BR>在其后十余年间,世界各国学者以此框架为基础,对基于混沌的数字图像加密技术已经进行了广泛深入的研究,取得了诸多成果。然而,绝大多数已有成果在扩散阶段均采用低维混沌系统,如Logistic映射、Chebyshev映射以及Tent映射。近年来的研究指出,基于低维混沌系统构建的图像加密系统具有结构简单、速度快的优点,但其密钥空间小、安全性较低的缺点同样十分突出。此外,对于绝大部分已有成果,用于扩散的密钥流仅与密钥相关,因而加密系统易受到已知明文或选择明文攻击。以上缺点极大的阻碍了这一极具潜力的技术在实际中的应用。与一般的混沌系统相比,超混沌系统拥有一个以上的正李雅普诺夫指数,具有更为复杂的动力学行为和更多的系统变量。这意味着基于超混沌系统构建的加密系统具有更强的不可预测性和更大的密钥空间,可很好地解决多数现有混沌图像加密系统所遇到的安全性问题。 <BR>发明内容 <BR>针对现有技术的不足,本发明提出一种基于Cat映射与超混沌Lorenz系统的数字图像加密方法,以达到提升加密系统抗穷举攻击、已知明文攻击和选择明文攻击能力的目的。 <BR>一种基于Cat映射与超混沌Lorenz系统的数字图像加密方法,包括以下步骤: <BR>步骤1:采用广义离散Cat映射对明文图像进行置乱处理,即改变图像中每一像素点的位置; <BR>步骤1‑1:设待加密明文图像的大小为M×N;若M=N,即待加密图像为正方形图像,则执行步骤1‑3;否则执行步骤1‑2; <BR>步骤1‑2:将非正方形图像按从上到下、从左到右的顺序,转换为边长为 <BR><MATHS num="0001"><MATH><![CDATA[ <mrow><MSUB><MI>L</MI> <MI>s</MI> </MSUB><MO>=</MO> <MI>ceil</MI> <MROW><MO>(</MO> <MSQRT><MI>M</MI> <MO>×</MO> <MI>N</MI> </MSQRT><MO>)</MO> </MROW><MO>-</MO> <MO>-</MO> <MO>-</MO> <MROW><MO>(</MO> <MN>1</MN> <MO>)</MO> </MROW></MROW>]]&gt;</MATH></MATHS> <BR>的正方形图像,其中,函数ceil(x)表示函数的返回值为距离x最近的大于或等于x的整数;转换后不足的像素点个数R如下: <BR><MATHS num="0002"><MATH><![CDATA[ <mrow><MI>R</MI> <MO>=</MO> <MSUP><MSUB><MI>L</MI> <MI>s</MI> </MSUB><MN>2</MN> </MSUP><MO>-</MO> <MI>M</MI> <MO>×</MO> <MI>N</MI> <MO>-</MO> <MO>-</MO> <MO>-</MO> <MROW><MO>(</MO> <MN>2</MN> <MO>)</MO> </MROW></MROW>]]&gt;</MATH></MATHS> <BR>不足的像素点用取值范围为[0~255]的随机整数填充;所述的该随机整数采用Logistic混沌映射量化产生;解密时,将填充的像素点删除,即可恢复大小为M×N的明文图像; <BR>步骤1‑3:采用广义离散Cat映射对图像进行置乱,消除相邻像素间的相关性;公式如下: <BR><MATHS num="0003"><MATH><![CDATA[ <mrow><MFENCED close="]" open="["><MTABLE><MTR><MTD><MSUP><MI>x</MI> <MO>'</MO> </MSUP></MTD></MTR><MTR><MTD><MSUP><MI>y</MI> <MO>'</MO> </MSUP></MTD></MTR></MTABLE></MFENCED><MO>=</MO> <MFENCED close="]" open="["><MTABLE><MTR><MTD><MN>1</MN> </MTD><MTD><MI>p</MI> </MTD></MTR><MTR><MTD><MI>q</MI> </MTD><MTD><MI>pq</MI> <MO>+</MO> <MN>1</MN> </MTD></MTR></MTABLE></MFENCED><MFENCED close="]" open="["><MTABLE><MTR><MTD><MI>x</MI> </MTD></MTR><MTR><MTD><MI>y</MI> </MTD></MTR></MTABLE></MFENCED><MI>mod</MI> <MSUB><MI>L</MI> <MI>s</MI> </MSUB><MO>-</MO> <MO>-</MO> <MO>-</MO> <MROW><MO>(</MO> <MN>3</MN> <MO>)</MO> </MROW></MROW>]]&gt;</MATH></MATHS> <BR>其中,x、y分别为变换前的横坐标、纵坐标,x′、y′分别为变换后新的横坐标、纵坐标,(p,q)∈[1,Ls]为控制置乱过程的系统参数,即由加密者设置的置乱密钥; <BR>用于解密的逆Cat映射的定义为 <BR><MATHS num="0004"><MATH><![CDATA[ <mrow><MFENCED close="]" open="["><MTABLE><MTR><MTD><MSUP><MI>x</MI> <MO>'</MO> </MSUP></MTD></MTR><MTR><MTD><MSUP><MI>y</MI> <MO>'</MO> </MSUP></MTD></MTR></MTABLE></MFENCED><MO>=</MO> <MFENCED close="]" open="["><MTABLE><MTR><MTD><MI>pq</MI> <MO>+</MO> <MN>1</MN> </MTD><MTD><MO>-</MO> <MI>p</MI> </MTD></MTR><MTR><MTD><MO>-</MO> <MI>q</MI> </MTD><MTD><MN>1</MN> </MTD></MTR></MTABLE></MFENCED><MFENCED close="]" open="["><MTABLE><MTR><MTD><MI>x</MI> </MTD></MTR><MTR><MTD><MI>y</MI> </MTD></MTR></MTABLE></MFENCED><MI>mod</MI> <MSUB><MI>L</MI> <MI>s</MI> </MSUB><MO>-</MO> <MO>-</MO> <MO>-</MO> <MROW><MO>(</MO> <MN>4</MN> <MO>)</MO> </MROW></MROW>]]&gt;</MATH></MATHS> <BR>步骤1‑4:返回执行步骤1‑3执行2~3次后执行步骤2; <BR>步骤2:采用超混沌Lorenz系统对置乱后的图像进行扩散处理,改变图像中每一点的像素值; <BR>超混沌Lorenz系统公式如下: <BR><MATHS num="0005"><MATH><![CDATA[ <mfenced open='{' close='' separators=''><MTABLE><MTR><MTD><MROW><MOVER><MI>x</MI> <MO>&amp;CenterDot;</MO> </MOVER><MO>=</MO> <MI>a</MI> <MROW><MO>(</MO> <MI>y</MI> <MO>-</MO> <MI>x</MI> <MO>)</MO> </MROW></MROW></MTD></MTR><MTR><MTD><MMULTISCRIPTS><MROW><MOVER><MI>y</MI> <MO>&amp;CenterDot;</MO> </MOVER><MO>=</MO> <MI>cx</MI> <MO>+</MO> <MI>y</MI> <MO>-</MO> <MI>xz</MI> <MO>-</MO> <MI>w</MI> </MROW></MMULTISCRIPTS></MTD></MTR><MTR><MTD><MOVER><MI>z</MI> <MO>&amp;CenterDot;</MO> </MOVER><MO>=</MO> <MI>xy</MI> <MO>-</MO> <MI>bz</MI> </MTD></MTR><MTR><MTD><MOVER><MI>w</MI> <MO>&amp;CenterDot;</MO> </MOVER><MO>=</MO> <MI>kyz</MI> </MTD></MTR></MTABLE><MO></MO><MO>-</MO> <MO>-</MO> <MO>-</MO> <MROW><MO>(</MO> <MN>5</MN> <MO>)</MO> </MROW></MFENCED>]]&gt;</MATH></MATHS> <BR>其中,a,b,c为系统参数,k为决定系统状态的控制参数,x,y,z,w为系统变量;分别表示x、y、z、w对&#22826;&#38451;&#22478;&#38598;&#22242;t进行微分; <BR>步骤2‑1:按照从左至右,从上至下的顺序将置乱图像的像素排为一个序列<MATHS num="0006"><MATH><![CDATA[ <mrow> <MI>p</MI> <MO>=</MO> <MO>{</MO> <MSUB><MI>p</MI> <MN>1</MN> </MSUB><MO>,</MO> <MSUB><MI>p</MI> <MN>2</MN> </MSUB><MO>,</MO> <MO>.</MO> <MO>.</MO> <MO>.</MO> <MO>,</MO> </MROW>]]&gt;</MATH></MATHS><MATHS num="0007"><MATH><![CDATA[ <mrow> <MSUB><MI>p</MI> <MROW><MSUB><MI>L</MI> <MI>S</MI> </MSUB><MO>×</MO> <MSUB><MI>L</MI> <MI>S</MI> </MSUB></MROW></MSUB><MO>}</MO> <MO>;</MO> </MROW>]]&gt;</MATH></MATHS> <BR>步骤2‑2:设置扩散密钥(x0,y0,z0,w0),采用四阶龙格库塔法求解超混沌Lorenz方程;其中,x0,y0,z0,w0为超混沌Lorenz系统的系统变量初始值; <BR>公式如下: <BR><MATHS num="0008"><MATH><![CDATA[ <mrow><MFENCED close="" open="{"><MTABLE><MTR><MTD><MSUB><MI>x</MI> <MROW><MI>n</MI> <MO>+</MO> <MN>1</MN> </MROW></MSUB><MO>=</MO> <MSUB><MI>x</MI> <MI>n</MI> </MSUB><MROW><MO>(</MO> <MI>h</MI> <MO>/</MO> <MN>6</MN> <MO>)</MO> </MROW><MROW><MO>(</MO> <MSUB><MI>K</MI> <MN>1</MN> </MSUB><MO>+</MO> <MSUB><MROW><MN>2</MN> <MI>K</MI> </MROW><MN>2</MN> </MSUB><MO>+</MO> <MSUB><MROW><MN>2</MN> <MI>K</MI> </MROW><MN>3</MN> </MSUB><MO>+</MO> <MSUB><MI>K</MI> <MN>4</MN> </MSUB><MO>)</MO> </MROW></MTD></MTR><MTR><MTD><MSUB><MI>y</MI> <MROW><MI>n</MI> <MO>+</MO> <MN>1</MN> </MROW></MSUB><MO>=</MO> <MSUB><MI>y</MI> <MI>n</MI> </MSUB><MO>+</MO> <MROW><MO>(</MO> <MI>h</MI> <MO>/</MO> <MN>6</MN> <MO>)</MO> </MROW><MROW><MO>(</MO> <MSUB><MI>L</MI> <MN>1</MN> </MSUB><MO>+</MO> <MSUB><MROW><MN>2</MN> <MI>L</MI> </MROW><MN>2</MN> </MSUB><MO>+</MO> <MSUB><MROW><MN>2</MN> <MI>L</MI> </MROW><MN>3</MN> </MSUB><MO>+</MO> <MSUB><MI>L</MI> <MN>4</MN> </MSUB><MO>)</MO> </MROW></MTD></MTR><MTR><MTD><MSUB><MI>z</MI> <MROW><MI>n</MI> <MO>+</MO> <MN>1</MN> </MROW></MSUB><MO>=</MO> <MSUB><MI>z</MI> <MI>n</MI> </MSUB><MO>+</MO> <MROW><MO>(</MO> <MI>h</MI> <MO>/</MO> <MN>6</MN> <MO>)</MO> </MROW><MROW><MO>(</MO> <MSUB><MI>M</MI> <MN>1</MN> </MSUB><MO>+</MO> <MSUB><MROW><MN>2</MN> <MI>M</MI> </MROW><MN>2</MN> </MSUB><MO>+</MO> <MSUB><MROW><MN>2</MN> <MI>M</MI> </MROW><MN>3</MN> </MSUB><MO>+</MO> <MSUB><MI>M</MI> <MN>4</MN> </MSUB><MO>)</MO> </MROW></MTD></MTR><MTR><MTD><MSUB><MI>w</MI> <MROW><MI>n</MI> <MO>+</MO> <MN>1</MN> </MROW></MSUB><MO>=</MO> <MSUB><MI>w</MI> <MI>n</MI> </MSUB><MO>+</MO> <MROW><MO>(</MO> <MI>h</MI> <MO>/</MO> <MN>6</MN> <MO>)</MO> </MROW><MROW><MO>(</MO> <MSUB><MI>N</MI> <MN>1</MN> </MSUB><MO>+</MO> <MSUB><MROW><MN>2</MN> <MI>N</MI> </MROW><MN>2</MN> </MSUB><MO>+</MO> <MSUB><MROW><MN>2</MN> <MI>N</MI> </MROW><MN>3</MN> </MSUB><MO>+</MO> <MSUB><MI>N</MI> <MN>4</MN> </MSUB><MO>)</MO> </MROW></MTD></MTR></MTABLE></MFENCED><MO>-</MO> <MO>-</MO> <MO>-</MO> <MROW><MO>(</MO> <MN>6</MN> <MO>)</MO> </MROW></MROW>]]&gt;</MATH></MATHS> <BR>其中, <BR><MATHS num="0009"><MATH><![CDATA[ <mrow><MFENCED close="" open="{"><MTABLE><MTR><MTD><MSUB><MI>K</MI> <MI>j</MI> </MSUB><MO>=</MO> <MI>a</MI> <MROW><MO>(</MO> <MSUB><MI>y</MI> <MI>n</MI> </MSUB><MO>-</MO> <MSUB><MI>x</MI> <MI>n</MI> </MSUB><MO>)</MO> </MROW></MTD></MTR><MTR><MTD><MSUB><MI>L</MI> <MI>j</MI> </MSUB><MO>=</MO> <MSUB><MI>cx</MI> <MI>n</MI> </MSUB><MO>+</MO> <MSUB><MI>y</MI> <MI>n</MI> </MSUB><MO>-</MO> <MSUB><MI>x</MI> <MI>n</MI> </MSUB><MSUB><MI>z</MI> <MI>n</MI> </MSUB><MO>-</MO> <MSUB><MI>w</MI> <MI>n</MI> </MSUB></MTD></MTR><MTR><MTD><MSUB><MI>M</MI> <MI>j</MI> </MSUB><MO>=</MO> <MSUB><MI>x</MI> <MI>n</MI> </MSUB><MSUB><MI>y</MI> <MI>n</MI> </MSUB><MO>-</MO> <MSUB><MI>bz</MI> <MI>n</MI> </MSUB></MTD></MTR><MTR><MTD><MSUB><MI>N</MI> <MI>j</MI> </MSUB><MO>=</MO> <MSUB><MI>ky</MI> <MI>n</MI> </MSUB><MSUB><MI>z</MI> <MI>n</MI> </MSUB></MTD></MTR></MTABLE></MFENCED><MO>-</MO> <MO>-</MO> <MO>-</MO> <MROW><MO>(</MO> <MN>7</MN> <MO>)</MO> </MROW></MROW>]]&gt;</MATH></MATHS> <BR>(j=1), <BR><MATHS num="0010"><MATH><![CDATA[ <mrow><MFENCED close="" open="{"><MTABLE><MTR><MTD><MSUB><MI>K</MI> <MI>j</MI> </MSUB><MO>=</MO> <MI>a</MI> <MO>[</MO> <MROW><MO>(</MO> <MSUB><MI>y</MI> <MI>n</MI> </MSUB><MO>+</MO> <MSUB><MI>hL</MI> <MROW><MI>j</MI> <MO>-</MO> <MN>1</MN> </MROW></MSUB><MO>/</MO> <MN>2</MN> <MO>)</MO> </MROW><MO>-</MO> <MROW><MO>(</MO> <MSUB><MI>x</MI> <MI>n</MI> </MSUB><MO>+</MO> <MSUB><MI>hK</MI> <MROW><MI>j</MI> <MO>-</MO> <MN>1</MN> </MROW></MSUB><MO>/</MO> <MN>2</MN> <MO>)</MO> </MROW><MO>]</MO> </MTD></MTR><MTR><MTD><MSUB><MI>L</MI> <MI>j</MI> </MSUB><MO>=</MO> <MI>c</MI> <MROW><MO>(</MO> <MSUB><MI>x</MI> <MI>n</MI> </MSUB><MO>+</MO> <MSUB><MI>hK</MI> <MROW><MI>j</MI> <MO>-</MO> <MN>1</MN> </MROW></MSUB><MO>/</MO> <MN>2</MN> <MO>)</MO> </MROW><MO>+</MO> <MROW><MO>(</MO> <MSUB><MI>y</MI> <MI>n</MI> </MSUB><MO>+</MO> <MSUB><MI>hL</MI> <MROW><MI>j</MI> <MO>-</MO> <MN>1</MN> </MROW></MSUB><MO>/</MO> <MN>2</MN> <MO>)</MO> </MROW><MO>-</MO> <MROW><MO>(</MO> <MSUB><MI>x</MI> <MI>n</MI> </MSUB><MO>+</MO> <MSUB><MI>hK</MI> <MROW><MI>j</MI> <MO>-</MO> <MN>1</MN> </MROW></MSUB><MO>/</MO> <MN>2</MN> <MO>)</MO> </MROW><MROW><MO>(</MO> <MSUB><MI>z</MI> <MI>n</MI> </MSUB><MO>+</MO> <MSUB><MI>hM</MI> <MROW><MI>j</MI> <MO>-</MO> <MN>1</MN> </MROW></MSUB><MO>/</MO> <MN>2</MN> <MO>)</MO> </MROW><MO>-</MO> <MROW><MO>(</MO> <MSUB><MI>w</MI> <MI>n</MI> </MSUB><MO>+</MO> <MSUB><MI>hN</MI> <MROW><MI>j</MI> <MO>-</MO> <MN>1</MN> </MROW></MSUB><MO>/</MO> <MN>2</MN> <MO>)</MO> </MROW></MTD></MTR><MTR><MTD><MSUB><MI>M</MI> <MI>j</MI> </MSUB><MO>=</MO> <MROW><MO>(</MO> <MSUB><MI>x</MI> <MI>n</MI> </MSUB><MO>+</MO> <MSUB><MI>hK</MI> <MROW><MI>j</MI> <MO>-</MO> <MN>1</MN> </MROW></MSUB><MO>/</MO> <MN>2</MN> <MO>)</MO> </MROW><MROW><MO>(</MO> <MSUB><MI>y</MI> <MI>n</MI> </MSUB><MO>+</MO> <MSUB><MI>hL</MI> <MROW><MI>j</MI> <MO>-</MO> <MN>1</MN> </MROW></MSUB><MO>/</MO> <MN>2</MN> <MO>)</MO> </MROW><MO>-</MO> <MI>b</MI> <MROW><MO>(</MO> <MSUB><MI>z</MI> <MI>n</MI> </MSUB><MO>+</MO> <MSUB><MI>hM</MI> <MROW><MI>j</MI> <MO>-</MO> <MN>1</MN> </MROW></MSUB><MO>/</MO> <MN>2</MN> <MO>)</MO> </MROW></MTD></MTR><MTR><MTD><MSUB><MI>N</MI> <MI>j</MI> </MSUB><MO>=</MO> <MI>k</MI> <MROW><MO>(</MO> <MSUB><MI>y</MI> <MI>n</MI> </MSUB><MO>+</MO> <MSUB><MI>hL</MI> <MROW><MI>j</MI> <MO>-</MO> <MN>1</MN> </MROW></MSUB><MO>/</MO> <MN>2</MN> <MO>)</MO> </MROW><MROW><MO>(</MO> <MSUB><MI>z</MI> <MI>n</MI> </MSUB><MO>+</MO> <MSUB><MI>hM</MI> <MROW><MI>j</MI> <MO>-</MO> <MN>1</MN> </MROW></MSUB><MO>/</MO> <MN>2</MN> <MO>)</MO> </MROW></MTD></MTR></MTABLE></MFENCED><MO>-</MO> <MO>-</MO> <MO>-</MO> <MROW><MO>(</MO> <MN>8</MN> <MO>)</MO> </MROW></MROW>]]&gt;</MATH></MATHS> <BR>(j=2,3), <BR><MATHS num="0011"><MATH><![CDATA[ <mrow><MFENCED close="" open="{"><MTABLE><MTR><MTD><MSUB><MI>K</MI> <MI>j</MI> </MSUB><MO>=</MO> <MI>a</MI> <MO>[</MO> <MROW><MO>(</MO> <MSUB><MI>y</MI> <MI>n</MI> </MSUB><MO>+</MO> <MSUB><MI>hL</MI> <MROW><MI>j</MI> <MO>-</MO> <MN>1</MN> </MROW></MSUB><MO>)</MO> </MROW><MO>-</MO> <MROW><MO>(</MO> <MSUB><MI>x</MI> <MI>n</MI> </MSUB><MO>+</MO> <MSUB><MI>hK</MI> <MROW><MI>j</MI> <MO>-</MO> <MN>1</MN> </MROW></MSUB><MO>)</MO> </MROW><MO>]</MO> </MTD></MTR><MTR><MTD><MSUB><MI>L</MI> <MI>j</MI> </MSUB><MO>=</MO> <MI>c</MI> <MROW><MO>(</MO> <MSUB><MI>x</MI> <MI>n</MI> </MSUB><MO>+</MO> <MSUB><MI>hK</MI> <MROW><MI>j</MI> <MO>-</MO> <MN>1</MN> </MROW></MSUB><MO>)</MO> </MROW><MO>+</MO> <MROW><MO>(</MO> <MSUB><MI>y</MI> <MI>n</MI> </MSUB><MO>+</MO> <MSUB><MI>hL</MI> <MROW><MI>j</MI> <MO>-</MO> <MN>1</MN> </MROW></MSUB><MO>)</MO> </MROW><MO>-</MO> <MROW><MO>(</MO> <MSUB><MI>x</MI> <MI>n</MI> </MSUB><MO>+</MO> <MSUB><MI>hK</MI> <MROW><MI>j</MI> <MO>-</MO> <MN>1</MN> </MROW></MSUB><MO>)</MO> </MROW><MROW><MO>(</MO> <MSUB><MI>z</MI> <MI>n</MI> </MSUB><MO>+</MO> <MSUB><MI>hM</MI> <MROW><MI>j</MI> <MO>-</MO> <MN>1</MN> </MROW></MSUB><MO>)</MO> </MROW><MO>-</MO> <MROW><MO>(</MO> <MSUB><MI>w</MI> <MI>n</MI> </MSUB><MO>+</MO> <MSUB><MI>hN</MI> <MROW><MI>j</MI> <MO>-</MO> <MN>1</MN> </MROW></MSUB><MO>)</MO> </MROW></MTD></MTR><MTR><MTD><MSUB><MI>M</MI> <MI>j</MI> </MSUB><MO>=</MO> <MROW><MO>(</MO> <MSUB><MI>x</MI> <MI>n</MI> </MSUB><MO>+</MO> <MSUB><MI>hK</MI> <MROW><MI>j</MI> <MO>-</MO> <MN>1</MN> </MROW></MSUB><MO>)</MO> </MROW><MROW><MO>(</MO> <MSUB><MI>y</MI> <MI>n</MI> </MSUB><MO>+</MO> <MSUB><MI>hL</MI> <MROW><MI>j</MI> <MO>-</MO> <MN>1</MN> </MROW></MSUB><MO>)</MO> </MROW><MO>-</MO> <MI>b</MI> <MROW><MO>(</MO> <MSUB><MI>z</MI> <MI>n</MI> </MSUB><MO>+</MO> <MSUB><MI>hM</MI> <MROW><MI>j</MI> <MO>-</MO> <MN>1</MN> </MROW></MSUB><MO>)</MO> </MROW></MTD></MTR><MTR><MTD><MSUB><MI>N</MI> <MI>j</MI> </MSUB><MO>=</MO> <MI>k</MI> <MROW><MO>(</MO> <MSUB><MI>y</MI> <MI>n</MI> </MSUB><MO>+</MO> <MSUB><MI>hL</MI> <MROW><MI>j</MI> <MO>-</MO> <MN>1</MN> </MROW></MSUB><MO>)</MO> </MROW><MROW><MO>(</MO> <MSUB><MI>z</MI> <MI>n</MI> </MSUB><MO>+</MO> <MSUB><MI>hM</MI> <MROW><MI>j</MI> <MO>-</MO> <MN>1</MN> </MROW></MSUB><MO>)</MO> </MROW></MTD></MTR></MTABLE></MFENCED><MO>-</MO> <MO>-</MO> <MO>-</MO> <MROW><MO>(</MO> <MN>9</MN> <MO>)</MO> </MROW></MROW>]]&gt;</MATH></MATHS> <BR>(j=4), <BR>其中,xn,yn,zn,wn表示第n次迭代的系统变量值,h为步长;基于以上方法代入公式(5)N0次,N0≥200,使系统充分进入混沌状态; <BR>步骤2‑3:继续代入公式(5),利用公式(10)对超混沌Lorenz系统的4个系统变量的当前值φn进行量化,得到4个密钥流元素 <BR><MATHS num="0012"><MATH><![CDATA[ <mrow><MSUB><MI>k</MI> <MSUB><MI>φ</MI> <MI>n</MI> </MSUB></MSUB><MO>=</MO> <MI>mod</MI> <MO>[</MO> <MI>round</MI> <MROW><MO>(</MO> <MROW><MO>(</MO> <MI>abs</MI> <MROW><MO>(</MO> <MSUB><MI>φ</MI> <MI>n</MI> </MSUB><MO>)</MO> </MROW><MO>-</MO> <MI>floor</MI> <MROW><MO>(</MO> <MI>abs</MI> <MROW><MO>(</MO> <MSUB><MI>φ</MI> <MI>n</MI> </MSUB><MO>)</MO> </MROW><MO>)</MO> </MROW><MO>)</MO> </MROW><MO>×</MO> <MSUP><MN>10</MN> <MN>14</MN> </MSUP><MO>)</MO> </MROW><MO>,</MO> <MI>L</MI> <MO>]</MO> <MO>,</MO> <MROW><MO>(</MO> <MSUB><MI>φ</MI> <MI>n</MI> </MSUB><MO>&amp;Element;</MO> <MO>{</MO> <MSUB><MI>x</MI> <MI>n</MI> </MSUB><MO>,</MO> <MSUB><MI>y</MI> <MI>n</MI> </MSUB><MO>,</MO> <MSUB><MI>z</MI> <MI>n</MI> </MSUB><MO>,</MO> <MSUB><MI>w</MI> <MI>n</MI> </MSUB><MO>}</MO> <MO>)</MO> </MROW><MO>-</MO> <MO>-</MO> <MO>-</MO> <MROW><MO>(</MO> <MN>10</MN> <MO>)</MO> </MROW></MROW>]]&gt;</MATH></MATHS> <BR>其中,abs(x)函数为返回x的绝对值,round(x)函数为返回x的四舍五入值,floor(x)函数表示返回距离x最近的小于或等于x的整数;mod(x,y)表示返回x除以y的余数;L为图像的灰度级别; <BR>步骤2‑4:采用集合Ω表示所有的排列情况;由于包含4个元素,因而其共有4!=24种排列情况;根据当前待加密的4个明文像素点的前一个点的明文值p',选取集合中的第X个排列情况,其中1≤X≤24; <BR>X由以下公式确定: <BR>X=p'%24+1&nbsp;&nbsp;&nbsp;&nbsp;(11) <BR>其中,p'的初始值可设为一取值在[0,255]间的整型常量; <BR>步骤2‑5:采用步骤2‑4选取的密钥流元素对4个明文像素实施加密; <BR>加密公式为: <BR><MATHS num="0013"><MATH><![CDATA[ <mrow><MFENCED close="" open="{"><MTABLE><MTR><MTD><MSUB><MI>c</MI> <MROW><MN>4</MN> <MO>×</MO> <MROW><MO>(</MO> <MI>n</MI> <MO>-</MO> <MN>1</MN> <MO>)</MO> </MROW><MO>+</MO> <MN>1</MN> </MROW></MSUB><MO>=</MO> <MSUB><MI>k</MI> <MSUB><MI>x</MI> <MI>n</MI> </MSUB></MSUB><MO>'</MO> <MO>&amp;CirclePlus;</MO> <MO>{</MO> <MO>[</MO> <MSUB><MI>p</MI> <MROW><MN>4</MN> <MO>×</MO> <MROW><MO>(</MO> <MI>n</MI> <MO>-</MO> <MN>1</MN> <MO>)</MO> </MROW><MO>+</MO> <MN>1</MN> </MROW></MSUB><MO>+</MO> <MSUB><MI>k</MI> <MSUB><MI>x</MI> <MI>n</MI> </MSUB></MSUB><MO>'</MO> <MO>]</MO> <MI>mod</MI> <MI>L</MI> <MO>}</MO> <MO>&amp;CirclePlus;</MO> <MSUB><MI>c</MI> <MROW><MN>4</MN> <MO>×</MO> <MROW><MO>(</MO> <MI>n</MI> <MO>-</MO> <MN>1</MN> <MO>)</MO> </MROW></MROW></MSUB></MTD></MTR><MTR><MTD><MSUB><MI>c</MI> <MROW><MN>4</MN> <MO>×</MO> <MROW><MO>(</MO> <MI>n</MI> <MO>-</MO> <MN>1</MN> <MO>)</MO> </MROW><MO>+</MO> <MN>2</MN> </MROW></MSUB><MO>=</MO> <MSUB><MI>k</MI> <MSUB><MI>y</MI> <MI>n</MI> </MSUB></MSUB><MO>'</MO> <MO>&amp;CirclePlus;</MO> <MO>{</MO> <MO>[</MO> <MSUB><MI>p</MI> <MROW><MN>4</MN> <MO>×</MO> <MROW><MO>(</MO> <MI>n</MI> <MO>-</MO> <MN>1</MN> <MO>)</MO> </MROW><MO>+</MO> <MN>2</MN> </MROW></MSUB><MO>+</MO> <MSUB><MI>k</MI> <MSUB><MI>y</MI> <MI>n</MI> </MSUB></MSUB><MO>'</MO> <MO>]</MO> <MI>mod</MI> <MI>L</MI> <MO>}</MO> <MO>&amp;CirclePlus;</MO> <MSUB><MI>c</MI> <MROW><MN>4</MN> <MO>×</MO> <MROW><MO>(</MO> <MI>n</MI> <MO>-</MO> <MN>1</MN> <MO>)</MO> </MROW><MO>+</MO> <MN>1</MN> </MROW></MSUB></MTD></MTR><MTR><MTD><MSUB><MI>c</MI> <MROW><MN>4</MN> <MO>×</MO> <MROW><MO>(</MO> <MI>n</MI> <MO>-</MO> <MN>1</MN> <MO>)</MO> </MROW><MO>+</MO> <MN>3</MN> </MROW></MSUB><MO>=</MO> <MSUB><MI>k</MI> <MSUB><MI>z</MI> <MI>n</MI> </MSUB></MSUB><MO>'</MO> <MO>&amp;CirclePlus;</MO> <MO>{</MO> <MO>[</MO> <MSUB><MI>p</MI> <MROW><MN>4</MN> <MO>×</MO> <MROW><MO>(</MO> <MI>n</MI> <MO>-</MO> <MN>1</MN> <MO>)</MO> </MROW><MO>+</MO> <MN>3</MN> </MROW></MSUB><MO>+</MO> <MSUB><MI>k</MI> <MSUB><MI>z</MI> <MI>n</MI> </MSUB></MSUB><MO>'</MO> <MO>]</MO> <MI>mod</MI> <MI>L</MI> <MO>}</MO> <MO>&amp;CirclePlus;</MO> <MSUB><MI>c</MI> <MROW><MN>4</MN> <MO>×</MO> <MROW><MO>(</MO> <MI>n</MI> <MO>-</MO> <MN>1</MN> <MO>)</MO> </MROW><MO>+</MO> <MN>2</MN> </MROW></MSUB></MTD></MTR><MTR><MTD><MSUB><MI>c</MI> <MROW><MN>4</MN> <MO>×</MO> <MROW><MO>(</MO> <MI>n</MI> <MO>-</MO> <MN>1</MN> <MO>)</MO> </MROW><MO>+</MO> <MN>4</MN> </MROW></MSUB><MO>=</MO> <MSUB><MI>k</MI> <MSUB><MI>w</MI> <MI>n</MI> </MSUB></MSUB><MO>'</MO> <MO>&amp;CirclePlus;</MO> <MO>{</MO> <MO>[</MO> <MSUB><MI>p</MI> <MROW><MN>4</MN> <MO>×</MO> <MROW><MO>(</MO> <MI>n</MI> <MO>-</MO> <MN>1</MN> <MO>)</MO> </MROW><MO>+</MO> <MN>4</MN> </MROW></MSUB><MO>+</MO> <MSUB><MI>k</MI> <MSUB><MI>w</MI> <MI>n</MI> </MSUB></MSUB><MO>'</MO> <MO>]</MO> <MI>mod</MI> <MI>L</MI> <MO>}</MO> <MO>&amp;CirclePlus;</MO> <MSUB><MI>c</MI> <MROW><MN>4</MN> <MO>×</MO> <MROW><MO>(</MO> <MI>n</MI> <MO>-</MO> <MN>1</MN> <MO>)</MO> </MROW><MO>+</MO> <MN>3</MN> </MROW></MSUB></MTD></MTR></MTABLE></MFENCED><MO>-</MO> <MO>-</MO> <MO>-</MO> <MROW><MO>(</MO> <MN>12</MN> <MO>)</MO> </MROW></MROW>]]&gt;</MATH></MATHS> <BR>其中,n=1,2,...表示对超混沌Lorenz系统的第n次迭代,p4×(n‑1)+m,c4×(n‑1)+m分别为当前操作的4个明文像素值和输出的4个密文像素值,m=1,2,3,4;c4×(n‑1)+m‑1为当前操作的像素点对应的前一个已加密点的密文像素值,其初始值c0为一取值在[0,255]间的整型常量,代表按位异或操作;若剩余待加密像素点不足4个,则只加密剩余的像素点即可; <BR>用于解密的反变换为 <BR><MATHS num="0014"><MATH><![CDATA[ <mrow><MFENCED close="" open="{"><MTABLE><MTR><MTD><MSUB><MI>p</MI> <MROW><MN>4</MN> <MO>×</MO> <MROW><MO>(</MO> <MI>n</MI> <MO>-</MO> <MN>1</MN> <MO>)</MO> </MROW><MO>+</MO> <MN>1</MN> </MROW></MSUB><MO>=</MO> <MO>[</MO> <MSUB><MI>k</MI> <MSUB><MI>x</MI> <MI>n</MI> </MSUB></MSUB><MO>'</MO> <MO>&amp;CirclePlus;</MO> <MSUB><MI>c</MI> <MROW><MN>4</MN> <MO>×</MO> <MROW><MO>(</MO> <MI>n</MI> <MO>-</MO> <MN>1</MN> <MO>)</MO> </MROW><MO>+</MO> <MN>1</MN> </MROW></MSUB><MO>&amp;CirclePlus;</MO> <MSUB><MI>c</MI> <MROW><MN>4</MN> <MO>×</MO> <MROW><MO>(</MO> <MI>n</MI> <MO>-</MO> <MN>1</MN> <MO>)</MO> </MROW></MROW></MSUB><MO>+</MO> <MI>L</MI> <MO>-</MO> <MSUB><MI>k</MI> <MSUB><MI>x</MI> <MI>n</MI> </MSUB></MSUB><MO>'</MO> <MO>]</MO> <MI>mod</MI> <MI>L</MI> </MTD></MTR><MTR><MTD><MSUB><MI>p</MI> <MROW><MN>4</MN> <MO>×</MO> <MROW><MO>(</MO> <MI>n</MI> <MO>-</MO> <MN>1</MN> <MO>)</MO> </MROW><MO>+</MO> <MN>2</MN> </MROW></MSUB><MO>=</MO> <MO>[</MO> <MSUB><MI>k</MI> <MSUB><MI>y</MI> <MI>n</MI> </MSUB></MSUB><MO>'</MO> <MO>&amp;CirclePlus;</MO> <MSUB><MI>c</MI> <MROW><MN>4</MN> <MO>×</MO> <MROW><MO>(</MO> <MI>n</MI> <MO>-</MO> <MN>1</MN> <MO>)</MO> </MROW><MO>+</MO> <MN>2</MN> </MROW></MSUB><MO>&amp;CirclePlus;</MO> <MSUB><MI>c</MI> <MROW><MN>4</MN> <MO>×</MO> <MROW><MO>(</MO> <MI>n</MI> <MO>-</MO> <MN>1</MN> <MO>)</MO> </MROW><MO>+</MO> <MN>1</MN> </MROW></MSUB><MO>+</MO> <MI>L</MI> <MO>-</MO> <MSUB><MI>k</MI> <MSUB><MI>y</MI> <MI>n</MI> </MSUB></MSUB><MO>'</MO> <MO>]</MO> <MI>mod</MI> <MI>L</MI> </MTD></MTR><MTR><MTD><MSUB><MI>p</MI> <MROW><MN>4</MN> <MO>×</MO> <MROW><MO>(</MO> <MI>n</MI> <MO>-</MO> <MN>1</MN> <MO>)</MO> </MROW><MO>+</MO> <MN>2</MN> </MROW></MSUB><MO>=</MO> <MO>[</MO> <MSUB><MI>k</MI> <MSUB><MI>y</MI> <MI>n</MI> </MSUB></MSUB><MO>'</MO> <MO>&amp;CirclePlus;</MO> <MSUB><MI>c</MI> <MROW><MN>4</MN> <MO>×</MO> <MROW><MO>(</MO> <MI>n</MI> <MO>-</MO> <MN>1</MN> <MO>)</MO> </MROW><MO>+</MO> <MN>2</MN> </MROW></MSUB><MO>&amp;CirclePlus;</MO> <MSUB><MI>c</MI> <MROW><MN>4</MN> <MO>×</MO> <MROW><MO>(</MO> <MI>n</MI> <MO>-</MO> <MN>1</MN> <MO>)</MO> </MROW><MO>+</MO> <MN>1</MN> </MROW></MSUB><MO>+</MO> <MI>L</MI> <MO>-</MO> <MSUB><MI>k</MI> <MSUB><MI>y</MI> <MI>n</MI> </MSUB></MSUB><MO>'</MO> <MO>]</MO> <MI>mod</MI> <MI>L</MI> </MTD></MTR><MTR><MTD><MSUB><MI>p</MI> <MROW><MN>4</MN> <MO>×</MO> <MROW><MO>(</MO> <MI>n</MI> <MO>-</MO> <MN>1</MN> <MO>)</MO> </MROW><MO>+</MO> <MN>4</MN> </MROW></MSUB><MO>=</MO> <MO>[</MO> <MSUB><MI>k</MI> <MSUB><MI>w</MI> <MI>n</MI> </MSUB></MSUB><MO>'</MO> <MO>&amp;CirclePlus;</MO> <MSUB><MI>c</MI> <MROW><MN>4</MN> <MO>×</MO> <MROW><MO>(</MO> <MI>n</MI> <MO>-</MO> <MN>1</MN> <MO>)</MO> </MROW><MO>+</MO> <MN>4</MN> </MROW></MSUB><MO>&amp;CirclePlus;</MO> <MSUB><MI>c</MI> <MROW><MN>4</MN> <MO>×</MO> <MROW><MO>(</MO> <MI>n</MI> <MO>-</MO> <MN>1</MN> <MO>)</MO> </MROW><MO>+</MO> <MN>3</MN> </MROW></MSUB><MO>+</MO> <MI>L</MI> <MO>-</MO> <MSUB><MI>k</MI> <MSUB><MI>w</MI> <MI>n</MI> </MSUB></MSUB><MO>'</MO> <MO>]</MO> <MI>mod</MI> <MI>L</MI> </MTD></MTR></MTABLE></MFENCED><MO>-</MO> <MO>-</MO> <MO>-</MO> <MROW><MO>(</MO> <MN>13</MN> <MO>)</MO> </MROW></MROW>]]&gt;</MATH></MATHS> <BR>步骤2‑6:返回执行步骤2‑3,直到序列p中的所有像素点按照从左至右的顺序完全加密; <BR>步骤2‑7:将加密完的密文像素序列按照从左至右的顺序重新排为Ls×Ls的矩阵形式,从而得到密文图像; <BR>步骤3:根据加密强度要求,进行多轮加密,即反复执行步骤1~步骤2;所述加密强度是指抗统计攻击能力、抗已知明文攻击、抗选择明文攻击能力以及抗差分攻击能力。 <BR>本发明优点: <BR>(1)现有的混沌图像加密系统多数基于低维混沌系统构建,具有结构简单、速度快的优点,但其密钥空间小、安全性较低的缺点同样十分突出。与一般的混沌系统相比,超混沌系统具有更为复杂的动力学行为和更多的系统变量;因此基于超混沌系统构建的加密系统具有更强的不可预测性和更大的密钥空间;本发明提出的图像加密系统,其密钥长度为247位,高于经典密码学算法DES(56位),AES(基础标准为128位)及IDEA(128位)。 <BR>(2)通过引入与明文相关的密钥流生成机制,使密钥流不仅与密钥相关,而且与明文相关;即使使用相同的扩散密钥,在加密不同的明文图像时,所生成的密钥流也是不同的;因此,加密系统的抗已知/选择明文攻击的能力得到了显著提高。 <BR>附图说明 <BR>图1为本发明一种现有置乱扩散构架; <BR>图2为本发明一种实施例的基于Cat映射与超混沌Lorenz系统的数字图像加密方法流程图; <BR>图3为本发明一种实施例的应用广义离散Cat映射置乱图像;其中,(a)为256×256像素256级灰度明文图像;(b)为经1轮Cat变换后的结果;(c)为经2轮Cat变换后的结果;(d)为经3轮Cat变换后的结果; <BR>图4为本发明一种实施例的Logistic映射示意图; <BR>图5为本发明一种实施例的超混沌Lorenz系统示意图;其中,(a)为x‑y平面示意图;(b)为z‑w平面示意图; <BR>图6为本发明一种实施例的加密后图像示意图; <BR>图7为本发明一种实施例的明文图像与密文图像的直方图;其中,(a)为明文图像;(b)为明文图像直方图;(c)为密文图像;(d)为密文图像直方图; <BR>图8为本发明一种实施例的水平相邻像素相关性示意图;其中,(a)为明文图像;(b)为密文图像; <BR>图9为本发明一种实施例的加密过程密钥敏感性分析示意图;其中,(a)为明文图像;(b)为原始密钥加密得到的图像;(c)为修改后的密钥加密得到的图像;(d)为图(b)与图(c)两幅密文图像的差值; <BR>图10为本发明一种实施例的解密过程密钥敏感性分析示意图;其中,(a)为明文图像;(b)为密文图像;(c)为正确解密图像;(d)为错误解密图像; <BR>图11为本发明一种实施例的抗差分攻击测试示意图;其中,(a)为第一明文图像;(b)为第二明文图像;(c)为第一密文图像;(d)为第二密文图像;(e)为图(c)与图(d)两幅密文图像的差值。 <BR>具体实施方式 <BR>下面结合附图对本发明一种实施例做进一步说明。 <BR>一种基于Cat映射与超混沌Lorenz系统的数字图像加密方法,其流程如图2所示,包括以下步骤: <BR>本发明实施例中,采用一个大小为256×256的256级灰度图像进行加密,如图3(a)所示。 <BR>步骤1:采用广义离散Cat映射对明文图像进行置乱处理,即改变图像中每一像素点的位置; <BR>步骤1‑1:设待加密明文图像的大小为M×N;若M=N,即待加密图像为正方形图像,则执行步骤1‑3;否则执行步骤1‑2; <BR>本发明实施例中,明文图像大小为M=N=256,因此,执行步骤1‑3; <BR>步骤1‑2:将非正方形图像按从上到下、从左到右的顺序,转换为边长为 <BR><MATHS num="0015"><MATH><![CDATA[ <mrow><MSUB><MI>L</MI> <MI>s</MI> </MSUB><MO>=</MO> <MI>ceil</MI> <MROW><MO>(</MO> <MSQRT><MI>M</MI> <MO>×</MO> <MI>N</MI> </MSQRT><MO>)</MO> </MROW><MO>-</MO> <MO>-</MO> <MO>-</MO> <MROW><MO>(</MO> <MN>1</MN> <MO>)</MO> </MROW></MROW>]]&gt;</MATH></MATHS> <BR>的正方形图像; <BR>转换后不足的像素点个数如下: <BR><MATHS num="0016"><MATH><![CDATA[ <mrow><MI>R</MI> <MO>=</MO> <MSUP><MSUB><MI>L</MI> <MI>s</MI> </MSUB><MN>2</MN> </MSUP><MO>-</MO> <MI>M</MI> <MO>×</MO> <MI>N</MI> <MO>-</MO> <MO>-</MO> <MO>-</MO> <MROW><MO>(</MO> <MN>2</MN> <MO>)</MO> </MROW></MROW>]]&gt;</MATH></MATHS> <BR>不足的像素点用取值范围为[0~255]的随机整数填充;所述的该随机整数采用Logistic混沌映射量化产生; <BR>Logistic映射的公式为: <BR>xn+1=μxn(1‑xn),xn∈[0,1],μ∈[0,4]&nbsp;&nbsp;&nbsp;&nbsp;(14) <BR>其中,μ和x分别为控制参数和状态变量,xn表示第n次迭代的状态变量值。当μ∈[3.57,4]时,系统处于混沌状态,如图4所示。 <BR>由加密者设定μ和状态变量初始值x0,迭代公式(14)N0次(N0为常量,一般取N0≥200),使系统充分进入混沌状态。注意:对于状态变量x,0.5为‘不良点’,会使其在后续迭代中陷入‘不动点’0。若该情况出现,则对x做一个微小的扰动,扰动值可取10‑2。 <BR>迭代Logistic映射R次,利用公式(15)对每次迭代得到的当前状态变量值xn进行量化,完成对R个像素点的填充; <BR>Rnd=mod[floor(xn×1014),256]&nbsp;&nbsp;&nbsp;&nbsp;(15) <BR>其中,floor(x)函数表示返回距离x最近的小于或等于x的整数,mod(x,y)表示返回x除以y的余数,Rnd为用于填充的随机数。 <BR>解密时,将填充的R个像素点删除,即可恢复大小为M×N的明文图像。 <BR>步骤1‑3:采用广义离散Cat映射对图像进行置乱,消除相邻像素间的相关性;公式如下: <BR><MATHS num="0017"><MATH><![CDATA[ <mrow><MFENCED close="]" open="["><MTABLE><MTR><MTD><MSUP><MI>x</MI> <MO>'</MO> </MSUP></MTD></MTR><MTR><MTD><MSUP><MI>y</MI> <MO>'</MO> </MSUP></MTD></MTR></MTABLE></MFENCED><MO>=</MO> <MFENCED close="]" open="["><MTABLE><MTR><MTD><MN>1</MN> </MTD><MTD><MI>p</MI> </MTD></MTR><MTR><MTD><MI>q</MI> </MTD><MTD><MI>pq</MI> <MO>+</MO> <MN>1</MN> </MTD></MTR></MTABLE></MFENCED><MFENCED close="]" open="["><MTABLE><MTR><MTD><MI>x</MI> </MTD></MTR><MTR><MTD><MI>y</MI> </MTD></MTR></MTABLE></MFENCED><MI>mod</MI> <MSUB><MI>L</MI> <MI>s</MI> </MSUB><MO>-</MO> <MO>-</MO> <MO>-</MO> <MROW><MO>(</MO> <MN>3</MN> <MO>)</MO> </MROW></MROW>]]&gt;</MATH></MATHS> <BR>本发明实施例中,置乱密钥设为p=20,q=7,对明文图像实施Cat变换,图3(b)为应用Cat映射置乱1轮后的结果。 <BR>用于解密的逆Cat映射的定义为 <BR><MATHS num="0018"><MATH><![CDATA[ <mrow><MFENCED close="]" open="["><MTABLE><MTR><MTD><MSUP><MI>x</MI> <MO>'</MO> </MSUP></MTD></MTR><MTR><MTD><MSUP><MI>y</MI> <MO>'</MO> </MSUP></MTD></MTR></MTABLE></MFENCED><MO>=</MO> <MFENCED close="]" open="["><MTABLE><MTR><MTD><MI>pq</MI> <MO>+</MO> <MN>1</MN> </MTD><MTD><MO>-</MO> <MI>p</MI> </MTD></MTR><MTR><MTD><MO>-</MO> <MI>q</MI> </MTD><MTD><MN>1</MN> </MTD></MTR></MTABLE></MFENCED><MFENCED close="]" open="["><MTABLE><MTR><MTD><MI>x</MI> </MTD></MTR><MTR><MTD><MI>y</MI> </MTD></MTR></MTABLE></MFENCED><MI>mod</MI> <MSUB><MI>L</MI> <MI>s</MI> </MSUB><MO>-</MO> <MO>-</MO> <MO>-</MO> <MROW><MO>(</MO> <MN>4</MN> <MO>)</MO> </MROW></MROW>]]&gt;</MATH></MATHS> <BR>步骤1‑4:返回执行步骤1‑3执行2~3次后执行步骤2; <BR>本发明实实施例中,为充分消除相邻像素间的相关性,对明文图像实施3轮置乱操作。图3(c)、(d)分别为应用Cat变换置乱2轮和3轮后的结果; <BR>然而,由于置乱过程只改变了像素的位置,而并未改变像素的值,置乱后图像具有与明文图像相同的直方图分布。因此,单纯置乱图像不能很好的抵御统计攻击和已知/选择明文攻击。 <BR>步骤2:采用超混沌Lorenz系统对置乱后的图像进行扩散处理,改变图像中每一点的像素值; <BR>超混沌Lorenz系统公式如下: <BR><MATHS num="0019"><MATH><![CDATA[ <mrow><MFENCED close="" open="{" separators=""><MTABLE><MTR><MTD><MROW><MOVER><MI>x</MI> <MO>&amp;CenterDot;</MO> </MOVER><MO>=</MO> <MI>a</MI> <MROW><MO>(</MO> <MI>y</MI> <MO>-</MO> <MI>x</MI> <MO>)</MO> </MROW></MROW></MTD></MTR><MTR><MTD><MMULTISCRIPTS><MROW><MOVER><MI>y</MI> <MO>&amp;CenterDot;</MO> </MOVER><MO>=</MO> <MI>cx</MI> <MO>+</MO> <MI>y</MI> <MO>-</MO> <MI>xz</MI> <MO>-</MO> <MI>w</MI> </MROW></MMULTISCRIPTS></MTD></MTR><MTR><MTD><MOVER><MI>z</MI> <MO>&amp;CenterDot;</MO> </MOVER><MO>=</MO> <MI>xy</MI> <MO>-</MO> <MI>bz</MI> </MTD></MTR><MTR><MTD><MOVER><MI>w</MI> <MO>&amp;CenterDot;</MO> </MOVER><MO>=</MO> <MI>kyz</MI> </MTD></MTR></MTABLE><MO></MO></MFENCED><MO>-</MO> <MO>-</MO> <MO>-</MO> <MROW><MO>(</MO> <MN>5</MN> <MO>)</MO> </MROW></MROW>]]&gt;</MATH></MATHS> <BR>超混沌Lorenz系统的系统参数设置为a=10,b=8/3,c=28,控制参数设为k=0.85,扩散密钥设为(x0=8.1,y0=‑9.1,z0=1.3,w0=‑6.3),基于龙格库塔法迭代超混沌Lorenz系统200次,使系统充分进入混沌状态,其x‑y平面与z‑w平面如图5所示。 <BR>步骤2‑1:按照从左至右,从上至下的顺序将置乱图像的像素排为一个序列p={81,26,170,90,...,136}; <BR>步骤2‑2:设置扩散密钥(x0,y0,z0,w0),采用四阶龙格库塔法求解超混沌Lorenz方程;x0,y0,z0,w0为超混沌Lorenz系统的系统变量初始值; <BR>公式如下: <BR><MATHS num="0020"><MATH><![CDATA[ <mrow><MFENCED close="" open="{"><MTABLE><MTR><MTD><MSUB><MI>x</MI> <MROW><MI>n</MI> <MO>+</MO> <MN>1</MN> </MROW></MSUB><MO>=</MO> <MSUB><MI>x</MI> <MI>n</MI> </MSUB><MROW><MO>(</MO> <MI>h</MI> <MO>/</MO> <MN>6</MN> <MO>)</MO> </MROW><MROW><MO>(</MO> <MSUB><MI>K</MI> <MN>1</MN> </MSUB><MO>+</MO> <MSUB><MROW><MN>2</MN> <MI>K</MI> </MROW><MN>2</MN> </MSUB><MO>+</MO> <MSUB><MROW><MN>2</MN> <MI>K</MI> </MROW><MN>3</MN> </MSUB><MO>+</MO> <MSUB><MI>K</MI> <MN>4</MN> </MSUB><MO>)</MO> </MROW></MTD></MTR><MTR><MTD><MSUB><MI>y</MI> <MROW><MI>n</MI> <MO>+</MO> <MN>1</MN> </MROW></MSUB><MO>=</MO> <MSUB><MI>y</MI> <MI>n</MI> </MSUB><MO>+</MO> <MROW><MO>(</MO> <MI>h</MI> <MO>/</MO> <MN>6</MN> <MO>)</MO> </MROW><MROW><MO>(</MO> <MSUB><MI>L</MI> <MN>1</MN> </MSUB><MO>+</MO> <MSUB><MROW><MN>2</MN> <MI>L</MI> </MROW><MN>2</MN> </MSUB><MO>+</MO> <MSUB><MROW><MN>2</MN> <MI>L</MI> </MROW><MN>3</MN> </MSUB><MO>+</MO> <MSUB><MI>L</MI> <MN>4</MN> </MSUB><MO>)</MO> </MROW></MTD></MTR><MTR><MTD><MSUB><MI>z</MI> <MROW><MI>n</MI> <MO>+</MO> <MN>1</MN> </MROW></MSUB><MO>=</MO> <MSUB><MI>z</MI> <MI>n</MI> </MSUB><MO>+</MO> <MROW><MO>(</MO> <MI>h</MI> <MO>/</MO> <MN>6</MN> <MO>)</MO> </MROW><MROW><MO>(</MO> <MSUB><MI>M</MI> <MN>1</MN> </MSUB><MO>+</MO> <MSUB><MROW><MN>2</MN> <MI>M</MI> </MROW><MN>2</MN> </MSUB><MO>+</MO> <MSUB><MROW><MN>2</MN> <MI>M</MI> </MROW><MN>3</MN> </MSUB><MO>+</MO> <MSUB><MI>M</MI> <MN>4</MN> </MSUB><MO>)</MO> </MROW></MTD></MTR><MTR><MTD><MSUB><MI>w</MI> <MROW><MI>n</MI> <MO>+</MO> <MN>1</MN> </MROW></MSUB><MO>=</MO> <MSUB><MI>w</MI> <MI>n</MI> </MSUB><MO>+</MO> <MROW><MO>(</MO> <MI>h</MI> <MO>/</MO> <MN>6</MN> <MO>)</MO> </MROW><MROW><MO>(</MO> <MSUB><MI>N</MI> <MN>1</MN> </MSUB><MO>+</MO> <MSUB><MROW><MN>2</MN> <MI>N</MI> </MROW><MN>2</MN> </MSUB><MO>+</MO> <MSUB><MROW><MN>2</MN> <MI>N</MI> </MROW><MN>3</MN> </MSUB><MO>+</MO> <MSUB><MI>N</MI> <MN>4</MN> </MSUB><MO>)</MO> </MROW></MTD></MTR></MTABLE></MFENCED><MO>-</MO> <MO>-</MO> <MO>-</MO> <MROW><MO>(</MO> <MN>6</MN> <MO>)</MO> </MROW></MROW>]]&gt;</MATH></MATHS> <BR>其中, <BR><MATHS num="0021"><MATH><![CDATA[ <mrow><MFENCED close="" open="{"><MTABLE><MTR><MTD><MSUB><MI>K</MI> <MI>j</MI> </MSUB><MO>=</MO> <MI>a</MI> <MROW><MO>(</MO> <MSUB><MI>y</MI> <MI>n</MI> </MSUB><MO>-</MO> <MSUB><MI>x</MI> <MI>n</MI> </MSUB><MO>)</MO> </MROW></MTD></MTR><MTR><MTD><MSUB><MI>L</MI> <MI>j</MI> </MSUB><MO>=</MO> <MSUB><MI>cx</MI> <MI>n</MI> </MSUB><MO>+</MO> <MSUB><MI>y</MI> <MI>n</MI> </MSUB><MO>-</MO> <MSUB><MI>x</MI> <MI>n</MI> </MSUB><MSUB><MI>z</MI> <MI>n</MI> </MSUB><MO>-</MO> <MSUB><MI>w</MI> <MI>n</MI> </MSUB></MTD></MTR><MTR><MTD><MSUB><MI>M</MI> <MI>j</MI> </MSUB><MO>=</MO> <MSUB><MI>x</MI> <MI>n</MI> </MSUB><MSUB><MI>y</MI> <MI>n</MI> </MSUB><MO>-</MO> <MSUB><MI>bz</MI> <MI>n</MI> </MSUB></MTD></MTR><MTR><MTD><MSUB><MI>N</MI> <MI>j</MI> </MSUB><MO>=</MO> <MSUB><MI>ky</MI> <MI>n</MI> </MSUB><MSUB><MI>z</MI> <MI>n</MI> </MSUB></MTD></MTR></MTABLE></MFENCED><MO>-</MO> <MO>-</MO> <MO>-</MO> <MROW><MO>(</MO> <MN>7</MN> <MO>)</MO> </MROW></MROW>]]&gt;</MATH></MATHS> <BR>(j=1), <BR><MATHS num="0022"><MATH><![CDATA[ <mrow><MFENCED close="" open="{"><MTABLE><MTR><MTD><MSUB><MI>K</MI> <MI>j</MI> </MSUB><MO>=</MO> <MI>a</MI> <MO>[</MO> <MROW><MO>(</MO> <MSUB><MI>y</MI> <MI>n</MI> </MSUB><MO>+</MO> <MSUB><MI>hL</MI> <MROW><MI>j</MI> <MO>-</MO> <MN>1</MN> </MROW></MSUB><MO>/</MO> <MN>2</MN> <MO>)</MO> </MROW><MO>-</MO> <MROW><MO>(</MO> <MSUB><MI>x</MI> <MI>n</MI> </MSUB><MO>+</MO> <MSUB><MI>hK</MI> <MROW><MI>j</MI> <MO>-</MO> <MN>1</MN> </MROW></MSUB><MO>/</MO> <MN>2</MN> <MO>)</MO> </MROW><MO>]</MO> </MTD></MTR><MTR><MTD><MSUB><MI>L</MI> <MI>j</MI> </MSUB><MO>=</MO> <MI>c</MI> <MROW><MO>(</MO> <MSUB><MI>x</MI> <MI>n</MI> </MSUB><MO>+</MO> <MSUB><MI>hK</MI> <MROW><MI>j</MI> <MO>-</MO> <MN>1</MN> </MROW></MSUB><MO>/</MO> <MN>2</MN> <MO>)</MO> </MROW><MO>+</MO> <MROW><MO>(</MO> <MSUB><MI>y</MI> <MI>n</MI> </MSUB><MO>+</MO> <MSUB><MI>hL</MI> <MROW><MI>j</MI> <MO>-</MO> <MN>1</MN> </MROW></MSUB><MO>/</MO> <MN>2</MN> <MO>)</MO> </MROW><MO>-</MO> <MROW><MO>(</MO> <MSUB><MI>x</MI> <MI>n</MI> </MSUB><MO>+</MO> <MSUB><MI>hK</MI> <MROW><MI>j</MI> <MO>-</MO> <MN>1</MN> </MROW></MSUB><MO>/</MO> <MN>2</MN> <MO>)</MO> </MROW><MROW><MO>(</MO> <MSUB><MI>z</MI> <MI>n</MI> </MSUB><MO>+</MO> <MSUB><MI>hM</MI> <MROW><MI>j</MI> <MO>-</MO> <MN>1</MN> </MROW></MSUB><MO>/</MO> <MN>2</MN> <MO>)</MO> </MROW><MO>-</MO> <MROW><MO>(</MO> <MSUB><MI>w</MI> <MI>n</MI> </MSUB><MO>+</MO> <MSUB><MI>hN</MI> <MROW><MI>j</MI> <MO>-</MO> <MN>1</MN> </MROW></MSUB><MO>/</MO> <MN>2</MN> <MO>)</MO> </MROW></MTD></MTR><MTR><MTD><MSUB><MI>M</MI> <MI>j</MI> </MSUB><MO>=</MO> <MROW><MO>(</MO> <MSUB><MI>x</MI> <MI>n</MI> </MSUB><MO>+</MO> <MSUB><MI>hK</MI> <MROW><MI>j</MI> <MO>-</MO> <MN>1</MN> </MROW></MSUB><MO>/</MO> <MN>2</MN> <MO>)</MO> </MROW><MROW><MO>(</MO> <MSUB><MI>y</MI> <MI>n</MI> </MSUB><MO>+</MO> <MSUB><MI>hL</MI> <MROW><MI>j</MI> <MO>-</MO> <MN>1</MN> </MROW></MSUB><MO>/</MO> <MN>2</MN> <MO>)</MO> </MROW><MO>-</MO> <MI>b</MI> <MROW><MO>(</MO> <MSUB><MI>z</MI> <MI>n</MI> </MSUB><MO>+</MO> <MSUB><MI>hM</MI> <MROW><MI>j</MI> <MO>-</MO> <MN>1</MN> </MROW></MSUB><MO>/</MO> <MN>2</MN> <MO>)</MO> </MROW></MTD></MTR><MTR><MTD><MSUB><MI>N</MI> <MI>j</MI> </MSUB><MO>=</MO> <MI>k</MI> <MROW><MO>(</MO> <MSUB><MI>y</MI> <MI>n</MI> </MSUB><MO>+</MO> <MSUB><MI>hL</MI> <MROW><MI>j</MI> <MO>-</MO> <MN>1</MN> </MROW></MSUB><MO>/</MO> <MN>2</MN> <MO>)</MO> </MROW><MROW><MO>(</MO> <MSUB><MI>z</MI> <MI>n</MI> </MSUB><MO>+</MO> <MSUB><MI>hM</MI> <MROW><MI>j</MI> <MO>-</MO> <MN>1</MN> </MROW></MSUB><MO>/</MO> <MN>2</MN> <MO>)</MO> </MROW></MTD></MTR></MTABLE></MFENCED><MO>-</MO> <MO>-</MO> <MO>-</MO> <MROW><MO>(</MO> <MN>8</MN> <MO>)</MO> </MROW></MROW>]]&gt;</MATH></MATHS> <BR>(j=2,3), <BR><MATHS num="0023"><MATH><![CDATA[ <mrow><MFENCED close="" open="{"><MTABLE><MTR><MTD><MSUB><MI>K</MI> <MI>j</MI> </MSUB><MO>=</MO> <MI>a</MI> <MO>[</MO> <MROW><MO>(</MO> <MSUB><MI>y</MI> <MI>n</MI> </MSUB><MO>+</MO> <MSUB><MI>hL</MI> <MROW><MI>j</MI> <MO>-</MO> <MN>1</MN> </MROW></MSUB><MO>)</MO> </MROW><MO>-</MO> <MROW><MO>(</MO> <MSUB><MI>x</MI> <MI>n</MI> </MSUB><MO>+</MO> <MSUB><MI>hK</MI> <MROW><MI>j</MI> <MO>-</MO> <MN>1</MN> </MROW></MSUB><MO>)</MO> </MROW><MO>]</MO> </MTD></MTR><MTR><MTD><MSUB><MI>L</MI> <MI>j</MI> </MSUB><MO>=</MO> <MI>c</MI> <MROW><MO>(</MO> <MSUB><MI>x</MI> <MI>n</MI> </MSUB><MO>+</MO> <MSUB><MI>hK</MI> <MROW><MI>j</MI> <MO>-</MO> <MN>1</MN> </MROW></MSUB><MO>)</MO> </MROW><MO>+</MO> <MROW><MO>(</MO> <MSUB><MI>y</MI> <MI>n</MI> </MSUB><MO>+</MO> <MSUB><MI>hL</MI> <MROW><MI>j</MI> <MO>-</MO> <MN>1</MN> </MROW></MSUB><MO>)</MO> </MROW><MO>-</MO> <MROW><MO>(</MO> <MSUB><MI>x</MI> <MI>n</MI> </MSUB><MO>+</MO> <MSUB><MI>hK</MI> <MROW><MI>j</MI> <MO>-</MO> <MN>1</MN> </MROW></MSUB><MO>)</MO> </MROW><MROW><MO>(</MO> <MSUB><MI>z</MI> <MI>n</MI> </MSUB><MO>+</MO> <MSUB><MI>hM</MI> <MROW><MI>j</MI> <MO>-</MO> <MN>1</MN> </MROW></MSUB><MO>)</MO> </MROW><MO>-</MO> <MROW><MO>(</MO> <MSUB><MI>w</MI> <MI>n</MI> </MSUB><MO>+</MO> <MSUB><MI>hN</MI> <MROW><MI>j</MI> <MO>-</MO> <MN>1</MN> </MROW></MSUB><MO>)</MO> </MROW></MTD></MTR><MTR><MTD><MSUB><MI>M</MI> <MI>j</MI> </MSUB><MO>=</MO> <MROW><MO>(</MO> <MSUB><MI>x</MI> <MI>n</MI> </MSUB><MO>+</MO> <MSUB><MI>hK</MI> <MROW><MI>j</MI> <MO>-</MO> <MN>1</MN> </MROW></MSUB><MO>)</MO> </MROW><MROW><MO>(</MO> <MSUB><MI>y</MI> <MI>n</MI> </MSUB><MO>+</MO> <MSUB><MI>hL</MI> <MROW><MI>j</MI> <MO>-</MO> <MN>1</MN> </MROW></MSUB><MO>)</MO> </MROW><MO>-</MO> <MI>b</MI> <MROW><MO>(</MO> <MSUB><MI>z</MI> <MI>n</MI> </MSUB><MO>+</MO> <MSUB><MI>hM</MI> <MROW><MI>j</MI> <MO>-</MO> <MN>1</MN> </MROW></MSUB><MO>)</MO> </MROW></MTD></MTR><MTR><MTD><MSUB><MI>N</MI> <MI>j</MI> </MSUB><MO>=</MO> <MI>k</MI> <MROW><MO>(</MO> <MSUB><MI>y</MI> <MI>n</MI> </MSUB><MO>+</MO> <MSUB><MI>hL</MI> <MROW><MI>j</MI> <MO>-</MO> <MN>1</MN> </MROW></MSUB><MO>)</MO> </MROW><MROW><MO>(</MO> <MSUB><MI>z</MI> <MI>n</MI> </MSUB><MO>+</MO> <MSUB><MI>hM</MI> <MROW><MI>j</MI> <MO>-</MO> <MN>1</MN> </MROW></MSUB><MO>)</MO> </MROW></MTD></MTR></MTABLE></MFENCED><MO>-</MO> <MO>-</MO> <MO>-</MO> <MROW><MO>(</MO> <MN>9</MN> <MO>)</MO> </MROW></MROW>]]&gt;</MATH></MATHS> <BR>(j=4), <BR>基于以上方法代入公式(5)N0次,N0≥200,使系统充分进入混沌状态; <BR>步骤2‑3:继续代入公式(5),利用公式(10)对超混沌Lorenz系统的4个系统变量的当前值φn进行量化,得到4个密钥流元素 <BR><MATHS num="0024"><MATH><![CDATA[ <mrow><MSUB><MI>k</MI> <MSUB><MI>φ</MI> <MI>n</MI> </MSUB></MSUB><MO>=</MO> <MI>mod</MI> <MO>[</MO> <MI>round</MI> <MROW><MO>(</MO> <MROW><MO>(</MO> <MI>abs</MI> <MROW><MO>(</MO> <MSUB><MI>φ</MI> <MI>n</MI> </MSUB><MO>)</MO> </MROW><MO>-</MO> <MI>floor</MI> <MROW><MO>(</MO> <MI>abs</MI> <MROW><MO>(</MO> <MSUB><MI>φ</MI> <MI>n</MI> </MSUB><MO>)</MO> </MROW><MO>)</MO> </MROW><MO>)</MO> </MROW><MO>×</MO> <MSUP><MN>10</MN> <MN>14</MN> </MSUP><MO>)</MO> </MROW><MO>,</MO> <MI>L</MI> <MO>]</MO> <MO>,</MO> <MROW><MO>(</MO> <MSUB><MI>φ</MI> <MI>n</MI> </MSUB><MO>&amp;Element;</MO> <MO>{</MO> <MSUB><MI>x</MI> <MI>n</MI> </MSUB><MO>,</MO> <MSUB><MI>y</MI> <MI>n</MI> </MSUB><MO>,</MO> <MSUB><MI>z</MI> <MI>n</MI> </MSUB><MO>,</MO> <MSUB><MI>w</MI> <MI>n</MI> </MSUB><MO>}</MO> <MO>)</MO> </MROW><MO>-</MO> <MO>-</MO> <MO>-</MO> <MROW><MO>(</MO> <MN>10</MN> <MO>)</MO> </MROW></MROW>]]&gt;</MATH></MATHS> <BR>本发明实施例中,迭代超混沌Lorenz系统,得到4个当前系统变量值xn=1.82396416350754,yn=1.45924661824495,zn=‑0.17413567419304,wn=‑6.39695513926288,对以上4个值进行量化,灰度级别L=256,得到4个密钥流元素: <BR><MATHS num="0025"><MATH><![CDATA[ <mrow><MSUB><MI>k</MI> <MSUB><MI>x</MI> <MI>n</MI> </MSUB></MSUB><MO>=</MO> <MI>mod</MI> <MO>[</MO> <MI>round</MI> <MROW><MO>(</MO> <MROW><MO>(</MO> <MI>abs</MI> <MROW><MO>(</MO> <MN>1.82396416350754</MN> <MO>)</MO> </MROW><MO>-</MO> <MI>floor</MI> <MROW><MO>(</MO> <MI>abs</MI> <MROW><MO>(</MO> <MN>1.82396416350754</MN> <MO>)</MO> </MROW><MO>)</MO> </MROW><MO>)</MO> </MROW><MO>×</MO> <MSUP><MN>10</MN> <MN>14</MN> </MSUP><MO>)</MO> </MROW><MO>,</MO> <MN>256</MN> <MO>]</MO> <MO>=</MO> <MN>34</MN> </MROW>]]&gt;</MATH></MATHS> <BR><MATHS num="0026"><MATH><![CDATA[ <mrow><MSUB><MI>k</MI> <MSUB><MI>y</MI> <MI>n</MI> </MSUB></MSUB><MO>=</MO> <MI>mod</MI> <MO>[</MO> <MI>round</MI> <MROW><MO>(</MO> <MROW><MO>(</MO> <MI>abs</MI> <MROW><MO>(</MO> <MN>1.45924661824495</MN> <MO>)</MO> </MROW><MO>-</MO> <MI>floor</MI> <MROW><MO>(</MO> <MI>abs</MI> <MROW><MO>(</MO> <MN>1.45924661824495</MN> <MO>)</MO> </MROW><MO>)</MO> </MROW><MO>)</MO> </MROW><MO>×</MO> <MSUP><MN>10</MN> <MN>14</MN> </MSUP><MO>)</MO> </MROW><MO>,</MO> <MN>256</MN> <MO>]</MO> <MO>=</MO> <MN>239</MN> </MROW>]]&gt;</MATH></MATHS> <BR><MATHS num="0027"><MATH><![CDATA[ <mrow><MSUB><MI>k</MI> <MSUB><MI>z</MI> <MI>n</MI> </MSUB></MSUB><MO>=</MO> <MI>mod</MI> <MO>[</MO> <MI>round</MI> <MROW><MO>(</MO> <MROW><MO>(</MO> <MI>abs</MI> <MROW><MO>(</MO> <MO>-</MO> <MN>0.17413567419304</MN> <MO>)</MO> </MROW><MO>-</MO> <MI>floor</MI> <MROW><MO>(</MO> <MI>abs</MI> <MROW><MO>(</MO> <MO>-</MO> <MN>0.17413567419304</MN> <MO>)</MO> </MROW><MO>)</MO> </MROW><MO>)</MO> </MROW><MO>×</MO> <MSUP><MN>10</MN> <MN>14</MN> </MSUP><MO></MO><MO>)</MO> </MROW><MO>,</MO> <MN>256</MN> <MO>]</MO> <MO>=</MO> <MN>168</MN> </MROW>]]&gt;</MATH></MATHS> <BR><MATHS num="0028"><MATH><![CDATA[ <mrow><MSUB><MI>k</MI> <MSUB><MI>w</MI> <MI>n</MI> </MSUB></MSUB><MO>=</MO> <MI>mod</MI> <MO>[</MO> <MI>round</MI> <MROW><MO>(</MO> <MROW><MO>(</MO> <MI>abs</MI> <MROW><MO>(</MO> <MO>-</MO> <MN>6.39695513926288</MN> <MO>)</MO> </MROW><MO>-</MO> <MI>floor</MI> <MROW><MO>(</MO> <MI>abs</MI> <MROW><MO>(</MO> <MO>-</MO> <MN>6.39695513926288</MN> <MO>)</MO> </MROW><MO>)</MO> </MROW><MO>)</MO> </MROW><MO>×</MO> <MSUP><MN>10</MN> <MN>14</MN> </MSUP><MO>)</MO> </MROW><MO>,</MO> <MN>256</MN> <MO>]</MO> <MO>=</MO> <MN>144</MN> </MROW>]]&gt;</MATH></MATHS> <BR>步骤2‑4:采用集合Ω表示所有的排列情况;由于包含4个元素,因而其共有4!=24种排列情况;根据当前待加密的4个明文像素点的前一个点的明文值p',选取集合中的第X个排列情况,其中1≤X≤24; <BR>X由以下公式确定: <BR>X=p'%24+1&nbsp;&nbsp;&nbsp;(11) <BR>其中,p'的初始值可设为一取值在[0,255]间的整型常量; <BR>本发明实施例中,将的所有24种排列形式,存入集合Ω,即Ω={{34,239,168,144},{34,239,144,168},{34,144,239,168},{144,34,239,168},{144,34,168,239},{34,144,168,239},{34,168,144,239},{34,168,239,144},{168,34,239,144},{168,34,144,239},{168,144,34,239},{144,168,34,239},{144,168,239,34},{168,144,239,34},{168,239,144,34},{168,239,34,144},{239,168,34,144},{239,168,144,34},{239,144,168,34},{144,239,168,34},{144,239,34,168},{239,144,34,168},{239,34,144,168},{239,34,168,144}}。设p'的初始值为64,选取集合中的第X=p'%24+1=17个排列情况,即<MATHS num="0029"><MATH><![CDATA[ <msubsup> <MI>K</MI> <MSUB><MI>φ</MI> <MI>n</MI> </MSUB><MO>'</MO> </MSUBSUP>]]&gt;</MATH></MATHS><MATHS num="0030"><MATH><![CDATA[ <mrow> <MROW><MO>(</MO> <MSUBSUP><MI>k</MI> <MSUB><MI>x</MI> <MI>n</MI> </MSUB><MO>'</MO> </MSUBSUP><MO>,</MO> <MSUBSUP><MI>k</MI> <MSUB><MI>y</MI> <MI>n</MI> </MSUB><MO>'</MO> </MSUBSUP><MO>,</MO> <MSUBSUP><MI>k</MI> <MSUB><MI>z</MI> <MI>n</MI> </MSUB><MO>'</MO> </MSUBSUP><MO>,</MO> <MSUBSUP><MI>k</MI> <MSUB><MI>w</MI> <MI>n</MI> </MSUB><MO>'</MO> </MSUBSUP><MO>)</MO> </MROW><MO>=</MO> <MROW><MO>(</MO> <MN>239,168,34,144</MN> <MO>)</MO> </MROW><MO>.</MO> </MROW>]]&gt;</MATH></MATHS> <BR>步骤2‑5:采用步骤2‑4选取的密钥流元素对4个明文像素实施加密;其中,<MATHS num="0031"><MATH><![CDATA[ <msubsup> <MI>K</MI> <MSUB><MI>φ</MI> <MI>n</MI> </MSUB><MO>'</MO> </MSUBSUP>]]&gt;</MATH></MATHS><MATHS num="0032"><MATH><![CDATA[ <mrow> <MO>(</MO> <MSUBSUP><MI>k</MI> <MSUB><MI>x</MI> <MI>n</MI> </MSUB><MO>'</MO> </MSUBSUP><MO>,</MO> <MSUBSUP><MI>k</MI> <MSUB><MI>y</MI> <MI>n</MI> </MSUB><MO>'</MO> </MSUBSUP><MO>,</MO> <MSUBSUP><MI>k</MI> <MSUB><MI>z</MI> <MI>n</MI> </MSUB><MO>'</MO> </MSUBSUP><MO>,</MO> <MSUBSUP><MI>k</MI> <MSUB><MI>w</MI> <MI>n</MI> </MSUB><MO>'</MO> </MSUBSUP><MO>)</MO> </MROW>]]&gt;</MATH></MATHS> <BR>本发明实施例中,设c0为128。取待加密的4个明文像素,其值为p4×(n‑1)+1=81,p4×(n‑1)+2=26,p4×(n‑1)+3=170,p4×(n1)+4=90。利用步骤2‑4得到的4个密钥流元素对该4个像素实施加密,得到4个密文像素值为: <BR><MATHS num="0033"><MATH><![CDATA[ <mrow><MFENCED close="" open="{"><MTABLE><MTR><MTD><MSUB><MI>c</MI> <MROW><MN>4</MN> <MO>×</MO> <MROW><MO>(</MO> <MI>n</MI> <MO>-</MO> <MN>1</MN> <MO>)</MO> </MROW><MO>+</MO> <MN>1</MN> </MROW></MSUB><MO>=</MO> <MSUB><MI>k</MI> <MI>xn</MI> </MSUB><MO>'</MO> <MO>&amp;CirclePlus;</MO> <MO>{</MO> <MO>[</MO> <MSUB><MI>p</MI> <MROW><MN>4</MN> <MO>×</MO> <MROW><MO>(</MO> <MI>n</MI> <MO>-</MO> <MN>1</MN> <MO>)</MO> </MROW><MO>+</MO> <MN>1</MN> </MROW></MSUB><MO>+</MO> <MSUB><MI>k</MI> <MI>xn</MI> </MSUB><MO>'</MO> <MO>]</MO> <MI>mod</MI> <MI>L</MI> <MO>}</MO> <MO>&amp;CirclePlus;</MO> <MSUB><MI>c</MI> <MROW><MN>4</MN> <MO>×</MO> <MROW><MO>(</MO> <MI>n</MI> <MO>-</MO> <MN>1</MN> <MO>)</MO> </MROW></MROW></MSUB><MO>=</MO> <MN>239</MN> <MO>&amp;CirclePlus;</MO> <MO>{</MO> <MO>[</MO> <MN>81</MN> <MO>+</MO> <MN>239</MN> <MO>]</MO> <MI>mod</MI> <MN>256</MN> <MO>}</MO> <MO>&amp;CirclePlus;</MO> <MN>128</MN> <MO>=</MO> <MN>47</MN> </MTD></MTR><MTR><MTD><MSUB><MI>c</MI> <MROW><MN>4</MN> <MO>×</MO> <MROW><MO>(</MO> <MI>n</MI> <MO>-</MO> <MN>1</MN> <MO>)</MO> </MROW><MO>+</MO> <MN>2</MN> </MROW></MSUB><MO>=</MO> <MSUB><MI>k</MI> <MI>yn</MI> </MSUB><MO>'</MO> <MO>&amp;CirclePlus;</MO> <MO>{</MO> <MO>[</MO> <MSUB><MI>p</MI> <MROW><MN>4</MN> <MO>×</MO> <MROW><MO>(</MO> <MI>n</MI> <MO>-</MO> <MN>1</MN> <MO>)</MO> </MROW><MO>+</MO> <MN>2</MN> </MROW></MSUB><MO>+</MO> <MSUB><MI>k</MI> <MI>yn</MI> </MSUB><MO>'</MO> <MO>]</MO> <MI>mod</MI> <MI>L</MI> <MO>}</MO> <MO>&amp;CirclePlus;</MO> <MSUB><MI>c</MI> <MROW><MN>4</MN> <MO>×</MO> <MROW><MO>(</MO> <MI>n</MI> <MO>-</MO> <MN>1</MN> <MO>)</MO> </MROW><MO>+</MO> <MN>1</MN> </MROW></MSUB><MO>=</MO> <MN>168</MN> <MO>&amp;CirclePlus;</MO> <MO>{</MO> <MO>[</MO> <MN>26</MN> <MO>+</MO> <MN>168</MN> <MO>]</MO> <MI>mod</MI> <MN>256</MN> <MO>}</MO> <MO>&amp;CirclePlus;</MO> <MN>47</MN> <MO>=</MO> <MN>69</MN> </MTD></MTR><MTR><MTD><MSUB><MI>c</MI> <MROW><MN>4</MN> <MO>×</MO> <MROW><MO>(</MO> <MI>n</MI> <MO>-</MO> <MN>1</MN> <MO>)</MO> </MROW><MO>+</MO> <MN>3</MN> </MROW></MSUB><MO>=</MO> <MSUB><MI>k</MI> <MI>zn</MI> </MSUB><MO>'</MO> <MO>&amp;CirclePlus;</MO> <MO>{</MO> <MO>[</MO> <MSUB><MI>p</MI> <MROW><MN>4</MN> <MO>×</MO> <MROW><MO>(</MO> <MI>n</MI> <MO>-</MO> <MN>1</MN> <MO>)</MO> </MROW><MO>+</MO> <MN>3</MN> </MROW></MSUB><MO>+</MO> <MSUB><MI>k</MI> <MI>zn</MI> </MSUB><MO>'</MO> <MO>]</MO> <MI>mod</MI> <MI>L</MI> <MO>}</MO> <MO>&amp;CirclePlus;</MO> <MSUB><MI>c</MI> <MROW><MN>4</MN> <MO>×</MO> <MROW><MO>(</MO> <MI>n</MI> <MO>-</MO> <MN>1</MN> <MO>)</MO> </MROW><MO>+</MO> <MN>2</MN> </MROW></MSUB><MO>=</MO> <MN>34</MN> <MO>&amp;CirclePlus;</MO> <MO>{</MO> <MO>[</MO> <MN>170</MN> <MO>+</MO> <MN>34</MN> <MO>]</MO> <MI>mod</MI> <MN>256</MN> <MO>}</MO> <MO>&amp;CirclePlus;</MO> <MN>69</MN> <MO>=</MO> <MN>171</MN> </MTD></MTR><MTR><MTD><MSUB><MI>c</MI> <MROW><MN>4</MN> <MO>×</MO> <MROW><MO>(</MO> <MI>n</MI> <MO>-</MO> <MN>1</MN> <MO>)</MO> </MROW><MO>+</MO> <MN>4</MN> </MROW></MSUB><MO>=</MO> <MSUB><MI>k</MI> <MI>wn</MI> </MSUB><MO>'</MO> <MO>&amp;CirclePlus;</MO> <MO>{</MO> <MO>[</MO> <MSUB><MI>p</MI> <MROW><MN>4</MN> <MO>×</MO> <MROW><MO>(</MO> <MI>n</MI> <MO>-</MO> <MN>1</MN> <MO>)</MO> </MROW><MO>+</MO> <MN>4</MN> </MROW></MSUB><MO>+</MO> <MSUB><MI>k</MI> <MI>wn</MI> </MSUB><MO>'</MO> <MO>]</MO> <MI>mod</MI> <MI>L</MI> <MO>}</MO> <MO>&amp;CirclePlus;</MO> <MSUB><MI>c</MI> <MROW><MN>4</MN> <MO>×</MO> <MROW><MO>(</MO> <MI>n</MI> <MO>-</MO> <MN>1</MN> <MO>)</MO> </MROW><MO>+</MO> <MN>3</MN> </MROW></MSUB><MO>=</MO> <MN>144</MN> <MO>&amp;CirclePlus;</MO> <MO>{</MO> <MO>[</MO> <MN>90</MN> <MO>+</MO> <MN>144</MN> <MO>]</MO> <MI>mod</MI> <MN>256</MN> <MO>}</MO> <MO>&amp;CirclePlus;</MO> <MN>171</MN> <MO>=</MO> <MN>209</MN> </MTD></MTR></MTABLE></MFENCED><MO>-</MO> <MO>-</MO> <MO>-</MO> <MROW><MO>(</MO> <MN>12</MN> <MO>)</MO> </MROW></MROW>]]&gt;</MATH></MATHS> <BR>通过使用与明文相关的加密方法,每一个像素点的值都能被有效地扩散到整个密文图像,从而使加密系统具有较强的抗差分攻击能力。 <BR>用于解密的反变换为 <BR><MATHS num="0034"><MATH><![CDATA[ <mrow><MFENCED close="" open="{"><MTABLE><MTR><MTD><MSUB><MI>p</MI> <MROW><MN>4</MN> <MO>×</MO> <MROW><MO>(</MO> <MI>n</MI> <MO>-</MO> <MN>1</MN> <MO>)</MO> </MROW><MO>+</MO> <MN>1</MN> </MROW></MSUB><MO>=</MO> <MO>[</MO> <MSUB><MI>k</MI> <MSUB><MI>x</MI> <MI>n</MI> </MSUB></MSUB><MO>'</MO> <MO>&amp;CirclePlus;</MO> <MSUB><MI>c</MI> <MROW><MN>4</MN> <MO>×</MO> <MROW><MO>(</MO> <MI>n</MI> <MO>-</MO> <MN>1</MN> <MO>)</MO> </MROW><MO>+</MO> <MN>1</MN> </MROW></MSUB><MO>&amp;CirclePlus;</MO> <MSUB><MI>c</MI> <MROW><MN>4</MN> <MO>×</MO> <MROW><MO>(</MO> <MI>n</MI> <MO>-</MO> <MN>1</MN> <MO>)</MO> </MROW></MROW></MSUB><MO>+</MO> <MI>L</MI> <MO>-</MO> <MSUB><MI>k</MI> <MSUB><MI>x</MI> <MI>n</MI> </MSUB></MSUB><MO>'</MO> <MO>]</MO> <MI>mod</MI> <MI>L</MI> </MTD></MTR><MTR><MTD><MSUB><MI>p</MI> <MROW><MN>4</MN> <MO>×</MO> <MROW><MO>(</MO> <MI>n</MI> <MO>-</MO> <MN>1</MN> <MO>)</MO> </MROW><MO>+</MO> <MN>2</MN> </MROW></MSUB><MO>=</MO> <MO>[</MO> <MSUB><MI>k</MI> <MSUB><MI>y</MI> <MI>n</MI> </MSUB></MSUB><MO>'</MO> <MO>&amp;CirclePlus;</MO> <MSUB><MI>c</MI> <MROW><MN>4</MN> <MO>×</MO> <MROW><MO>(</MO> <MI>n</MI> <MO>-</MO> <MN>1</MN> <MO>)</MO> </MROW><MO>+</MO> <MN>2</MN> </MROW></MSUB><MO>&amp;CirclePlus;</MO> <MSUB><MI>c</MI> <MROW><MN>4</MN> <MO>×</MO> <MROW><MO>(</MO> <MI>n</MI> <MO>-</MO> <MN>1</MN> <MO>)</MO> </MROW><MO>+</MO> <MN>1</MN> </MROW></MSUB><MO>+</MO> <MI>L</MI> <MO>-</MO> <MSUB><MI>k</MI> <MSUB><MI>y</MI> <MI>n</MI> </MSUB></MSUB><MO>'</MO> <MO>]</MO> <MI>mod</MI> <MI>L</MI> </MTD></MTR><MTR><MTD><MSUB><MI>p</MI> <MROW><MN>4</MN> <MO>×</MO> <MROW><MO>(</MO> <MI>n</MI> <MO>-</MO> <MN>1</MN> <MO>)</MO> </MROW><MO>+</MO> <MN>2</MN> </MROW></MSUB><MO>=</MO> <MO>[</MO> <MSUB><MI>k</MI> <MSUB><MI>y</MI> <MI>n</MI> </MSUB></MSUB><MO>'</MO> <MO>&amp;CirclePlus;</MO> <MSUB><MI>c</MI> <MROW><MN>4</MN> <MO>×</MO> <MROW><MO>(</MO> <MI>n</MI> <MO>-</MO> <MN>1</MN> <MO>)</MO> </MROW><MO>+</MO> <MN>2</MN> </MROW></MSUB><MO>&amp;CirclePlus;</MO> <MSUB><MI>c</MI> <MROW><MN>4</MN> <MO>×</MO> <MROW><MO>(</MO> <MI>n</MI> <MO>-</MO> <MN>1</MN> <MO>)</MO> </MROW><MO>+</MO> <MN>1</MN> </MROW></MSUB><MO>+</MO> <MI>L</MI> <MO>-</MO> <MSUB><MI>k</MI> <MSUB><MI>y</MI> <MI>n</MI> </MSUB></MSUB><MO>'</MO> <MO>]</MO> <MI>mod</MI> <MI>L</MI> </MTD></MTR><MTR><MTD><MSUB><MI>p</MI> <MROW><MN>4</MN> <MO>×</MO> <MROW><MO>(</MO> <MI>n</MI> <MO>-</MO> <MN>1</MN> <MO>)</MO> </MROW><MO>+</MO> <MN>4</MN> </MROW></MSUB><MO>=</MO> <MO>[</MO> <MSUB><MI>k</MI> <MSUB><MI>w</MI> <MI>n</MI> </MSUB></MSUB><MO>'</MO> <MO>&amp;CirclePlus;</MO> <MSUB><MI>c</MI> <MROW><MN>4</MN> <MO>×</MO> <MROW><MO>(</MO> <MI>n</MI> <MO>-</MO> <MN>1</MN> <MO>)</MO> </MROW><MO>+</MO> <MN>4</MN> </MROW></MSUB><MO>&amp;CirclePlus;</MO> <MSUB><MI>c</MI> <MROW><MN>4</MN> <MO>×</MO> <MROW><MO>(</MO> <MI>n</MI> <MO>-</MO> <MN>1</MN> <MO>)</MO> </MROW><MO>+</MO> <MN>3</MN> </MROW></MSUB><MO>+</MO> <MI>L</MI> <MO>-</MO> <MSUB><MI>k</MI> <MSUB><MI>w</MI> <MI>n</MI> </MSUB></MSUB><MO>'</MO> <MO>]</MO> <MI>mod</MI> <MI>L</MI> </MTD></MTR></MTABLE></MFENCED><MO>-</MO> <MO>-</MO> <MO>-</MO> <MROW><MO>(</MO> <MN>13</MN> <MO>)</MO> </MROW></MROW>]]&gt;</MATH></MATHS> <BR>步骤2‑6:返回执行步骤2‑3,直到序列p中的所有像素点按照从左至右的顺序完全加密; <BR>步骤2‑7:将加密完的密文像素序列按照从左至右的顺序重新排为Ls×Ls的矩阵形式,从而得到密文图像; <BR>步骤3:根据加密强度要求,进行多轮加密,即反复执行步骤1~步骤2;所述加密强度是指抗统计攻击能力、抗已知明文/选择明文攻击能力以及抗差分攻击能力。 <BR>采用本发明方法所得加密图像如图6所示。 <BR>安全性能测试分析 <BR>对本发明实施例构建的图像加密系统进行6种详细的安全性能分析与测试,包括密钥敏感性、抗穷举攻击(密钥空间)、抗统计攻击(包括直方图,相邻像素相关性、&#22826;&#38451;&#22478;&#38598;&#22242;熵)以及抗差分攻击。 <BR>(1)抗穷举攻击(密钥空间) <BR>密钥空间是指在加密或解密过程中可用的不同密钥的总量。对于一个安全的加密系统,密钥空间应该足够大以使穷举攻击失效。基于本发明构建的加密系统的密钥由两部分构成:置乱密钥Key‑P与扩散密钥Key‑D。 <BR>Key‑P由Cat映射的控制参数(p,q)和迭代轮数m构成,p,q,m均为正整数且(p,q)的取值范围为[1,Ls],其中Ls为正方形图像的宽度或高度。因此,置乱密钥的总数为(N2)m。扩散密钥Key‑D包含4个浮点数(x0,y0,z0,w0)。根据IEEE浮点数标准,64比特双精度浮点数的计算精度为10‑15。因此,扩散密钥的总数为1060≈2199。 <BR>置乱密钥与扩散密钥相互独立。若Ls≥256,置乱轮数m=3,则总密钥空间Key‑S满足 <BR>Key‑S=key‑P×key‑D≥(28×28)3×2199=2247&nbsp;&nbsp;&nbsp;&nbsp;(16) <BR>表1为本发明与三种经典对称加密算法密钥空间的比较。从表中可以看出,本发明的密钥空间远大于各类经典加密算法,可有效抵御穷举攻击。 <BR>表1本发明与三种经典对称加密算法密钥空间比较 <BR></TABLES> <BR>(2)抗统计攻击 <BR>(a)直方图 <BR>直方图直观的描述了一幅图像中像素的分布情况。密文&#22826;&#38451;&#22478;&#38598;&#22242;的分布应具有较高的随机性,隐藏明文的冗余性并且不能让攻击者从中得到任何有关明文与密文关系的&#22826;&#38451;&#22478;&#38598;&#22242;。图7(a),(b)为明文图像及其直方图,(c),(d)为密文图像及其直方图。通过对比图7(b)与(d)可以看出,与明文图像相比,密文图像的直方图呈均匀分布,说明密文图像的像素值分布具有良好的随机性。 <BR>(b)相邻像素相关性 <BR>对于一个具有明确视觉内容的数字图像,其每一个像素点在水平、垂直以及对角线方向与其相邻像素点都是高度相关的。而对于一个设计良好的图像加密系统而言,其输出的密文图像应该具有足够低的相邻像素相关性。图8为明文图像与密文图像的相邻像素相关性可视化测试,该测试将两相邻像素的像素值分别绘制于x轴和y轴。从图8中可以看出,对于明文图像,其相邻像素的值集中在一对角线上,说明相邻像素间有极强的相关性。而对于密文图像,其相邻像素值均匀分布于整个灰度平面上,说明其相邻像素间已不具有任何相关性。对于垂直方向与对角线方向的可视化测试,可得到相似的结果。 <BR>为了定量比较明文与密文图像的相邻像素相关性,首先从明文和密文图像在每个相邻方向上随机选取3000对相邻点。然后,使用公式(17)~(19)计算相关系数rx,y。 <BR><MATHS num="0035"><MATH><![CDATA[ <mrow><MSUB><MI>r</MI> <MI>xy</MI> </MSUB><MO>=</MO> <MFRAC><MROW><MFRAC><MN>1</MN> <MI>N</MI> </MFRAC><MUNDEROVER><MI>Σ</MI> <MROW><MI>i</MI> <MO>=</MO> <MN>1</MN> </MROW><MI>N</MI> </MUNDEROVER><MROW><MO>(</MO> <MSUB><MI>x</MI> <MI>i</MI> </MSUB><MO>-</MO> <MOVER><MI>x</MI> <MO>&amp;OverBar;</MO> </MOVER><MO>)</MO> </MROW><MROW><MO>(</MO> <MSUB><MI>y</MI> <MI>i</MI> </MSUB><MO>-</MO> <MOVER><MI>y</MI> <MO>&amp;OverBar;</MO> </MOVER><MO>)</MO> </MROW></MROW><MSQRT><MROW><MO>(</MO> <MFRAC><MN>1</MN> <MI>N</MI> </MFRAC><MUNDEROVER><MI>Σ</MI> <MROW><MI>i</MI> <MO>=</MO> <MN>1</MN> </MROW><MI>N</MI> </MUNDEROVER><MSUP><MROW><MO>(</MO> <MSUB><MI>x</MI> <MI>i</MI> </MSUB><MO>-</MO> <MOVER><MI>x</MI> <MO>&amp;OverBar;</MO> </MOVER><MO>)</MO> </MROW><MN>2</MN> </MSUP><MO>)</MO> </MROW><MROW><MO>(</MO> <MFRAC><MN>1</MN> <MI>N</MI> </MFRAC><MUNDEROVER><MI>Σ</MI> <MROW><MI>i</MI> <MO>=</MO> <MN>1</MN> </MROW><MI>N</MI> </MUNDEROVER><MSUP><MROW><MO>(</MO> <MSUB><MI>y</MI> <MI>i</MI> </MSUB><MO>-</MO> <MOVER><MI>y</MI> <MO>&amp;OverBar;</MO> </MOVER><MO>)</MO> </MROW><MN>2</MN> </MSUP><MO>)</MO> </MROW></MSQRT></MFRAC><MO>,</MO> <MO>-</MO> <MO>-</MO> <MO>-</MO> <MROW><MO>(</MO> <MN>17</MN> <MO>)</MO> </MROW></MROW>]]&gt;</MATH></MATHS> <BR><MATHS num="0036"><MATH><![CDATA[ <mrow><MOVER><MI>x</MI> <MO>&amp;OverBar;</MO> </MOVER><MO>=</MO> <MFRAC><MN>1</MN> <MI>N</MI> </MFRAC><MUNDEROVER><MI>Σ</MI> <MROW><MI>i</MI> <MO>=</MO> <MN>1</MN> </MROW><MI>N</MI> </MUNDEROVER><MSUB><MI>x</MI> <MI>i</MI> </MSUB><MO>,</MO> <MO>-</MO> <MO>-</MO> <MO>-</MO> <MROW><MO>(</MO> <MN>18</MN> <MO>)</MO> </MROW></MROW>]]&gt;</MATH></MATHS> <BR><MATHS num="0037"><MATH><![CDATA[ <mrow><MOVER><MI>y</MI> <MO>&amp;OverBar;</MO> </MOVER><MO>=</MO> <MFRAC><MN>1</MN> <MI>N</MI> </MFRAC><MUNDEROVER><MI>Σ</MI> <MROW><MI>i</MI> <MO>=</MO> <MN>1</MN> </MROW><MI>N</MI> </MUNDEROVER><MSUB><MI>y</MI> <MI>i</MI> </MSUB><MO>,</MO> <MO>-</MO> <MO>-</MO> <MO>-</MO> <MROW><MO>(</MO> <MN>19</MN> <MO>)</MO> </MROW></MROW>]]&gt;</MATH></MATHS> <BR>其中,x和y分别是图像中两个相邻点的灰度值,N为采样点的个数。 <BR>明文图像和相应的密文图像在水平、垂直以及对角线方向的相关性如表2所示。从图8和表2可得出,通过使用本加密方法,明文图像中相邻像素间的强相关性在密文图像中得到了有效的消除。 <BR>表2明文图像与密文图像的相邻像素相关性比较 <BR></TABLES> <BR>(c)&#22826;&#38451;&#22478;&#38598;&#22242;熵 <BR>&#22826;&#38451;&#22478;&#38598;&#22242;熵是表征一个&#22826;&#38451;&#22478;&#38598;&#22242;源随机性与不可预测性的重要指标。对于一个&#22826;&#38451;&#22478;&#38598;&#22242;源s,其熵为: <BR><MATHS num="0038"><MATH><![CDATA[ <mrow><MI>H</MI> <MROW><MO>(</MO> <MI>S</MI> <MO>)</MO> </MROW><MO>=</MO> <MO>-</MO> <MUNDEROVER><MI>Σ</MI> <MROW><MI>i</MI> <MO>=</MO> <MN>0</MN> </MROW><MROW><MSUP><MN>2</MN> <MI>N</MI> </MSUP><MO>-</MO> <MN>1</MN> </MROW></MUNDEROVER><MI>P</MI> <MROW><MO>(</MO> <MSUB><MI>S</MI> <MI>i</MI> </MSUB><MO>)</MO> </MROW><MSUB><MI>log</MI> <MN>2</MN> </MSUB><MI>P</MI> <MROW><MO>(</MO> <MSUB><MI>S</MI> <MI>i</MI> </MSUB><MO>)</MO> </MROW><MO>-</MO> <MO>-</MO> <MO>-</MO> <MROW><MO>(</MO> <MN>20</MN> <MO>)</MO> </MROW></MROW>]]&gt;</MATH></MATHS> <BR>其中,N为表示一个码元si∈s所需的比特数,P(si)代表码元si出现的概率。对于一个由2N个不同码元组成的纯随机&#22826;&#38451;&#22478;&#38598;&#22242;源,其熵为H(s)=N。因此,对于一个具有28=256级灰度的密文图像,其&#22826;&#38451;&#22478;&#38598;&#22242;熵的理论值为H(m)=8。如果输出的密文的熵小于8,则密文存在一定程度的可预测性,将会威胁到系统的安全。 <BR>基于公式(20)计算得出,明文图像与密文图像的&#22826;&#38451;&#22478;&#38598;&#22242;熵分别为H(s)=7.1149和H(s)=7.9972。密文图像的&#22826;&#38451;&#22478;&#38598;&#22242;熵非常接近理想值8,说明密文图像的像素值分布具有极高的随机性。 <BR>通过以上三个方面的分析可知,本发明构建的加密系统具有良好的抗统计攻击能力。 <BR>(3)密钥敏感性 <BR>密钥敏感性意味着两个差异极小的密钥,在加密相同的明文时,将产生完全不同的密文。这个性质对于加密系统是极其重要的,否则攻击者可以尝试通过相近的密钥去恢复部分明文&#22826;&#38451;&#22478;&#38598;&#22242;。 <BR>(a)加密过程密钥敏感性 <BR>为测试加密过程对密钥的敏感性,首先使用扩散密钥(x0=6.7,y0=‑2.8,z0=4.1,w0=‑6.3)对明文图像进行加密,然后将其值修改为(x0=6.70000000000001,y0=‑2.8,z0=4.1,w0=‑6.3),即只将扩散密钥的第一个分量增加0.00000000000001,置乱密钥保持不变,观察由原始密钥和修改后密钥加密的图像以及它们的差值,如图9所示。图9中(a)为明文图像,(b)为采用原始密钥加密得到的密文,(c)为采用修改后的密钥加密得到的密文,(d)为两个密文图像的差值。通过计算得出(b)和(c)的差异度为99.62%。对密钥的其它部分加以微小的改变,可以得到类似的结果。 <BR>(b)解密过程密钥敏感性 <BR>在本项测试中,首先用正确密钥进行解密,之后使用修改后的密钥进行解密,观察解密效果。设正确的扩散密钥为:(x0=2.3,y0=‑3.6,z0=4.4,w0=‑5.3),错误密钥为(x0=2.3,y0=‑3.59999999999999,z0=4.4,w0=‑5.3),解密效果如图10所示,图,10中(a)为明文图像,(b)为加密后的密文,(c)为正确密钥解密后的图像,(d)为错误密钥解密后的图像。经过计算,在错误密钥只与正确密钥相差0.00000000000001的情况下,错误解密图像与明文图像的差异度为99.61%。对密钥的其它部分加以微小的改变,同样可以得到类似的结果。 <BR>由以上两个方面的分析可知,基于本发明构建的加密系统具有极高的密钥敏感性,即使使用一个与加密密钥具有极其微小差异的解密密钥,也不能解密得到任何明文相关&#22826;&#38451;&#22478;&#38598;&#22242;。 <BR>(4)抗差分攻击 <BR>差分攻击是指攻击者利用图像的微小改变,例如,改变明文图像的一个像素点的像素值,来观察加密结果的差别,并据此来破译加密算法。如果明文图像的一个微小改变能有效地扩散到整幅密文图像中,则差分攻击将是不可行的。加密系统的抗差分攻击能力通常基于NPCR(number&nbsp;of&nbsp;pixels&nbsp;change&nbsp;rate)和UACI(unified&nbsp;average&nbsp;change&nbsp;intensity)两个指标来进行衡量。NPCR用于测试两幅图像间的差异度,设P1(i,j)和P2(i,j)分别表示P1与P2两幅图像位于(i,j)点的像素值,NPCR的定义为: <BR><MATHS num="0039"><MATH><![CDATA[ <mrow><MI>NPCR</MI> <MO>=</MO> <MFRAC><MROW><MUNDEROVER><MI>Σ</MI> <MROW><MI>i</MI> <MO>=</MO> <MN>1</MN> </MROW><MI>W</MI> </MUNDEROVER><MUNDEROVER><MI>Σ</MI> <MROW><MI>j</MI> <MO>=</MO> <MN>1</MN> </MROW><MI>H</MI> </MUNDEROVER><MI>D</MI> <MROW><MO>(</MO> <MI>i</MI> <MO>,</MO> <MI>j</MI> <MO>)</MO> </MROW></MROW><MROW><MI>W</MI> <MO>×</MO> <MI>H</MI> </MROW></MFRAC><MO>×</MO> <MN>100</MN> <MO>%</MO> <MO>,</MO> <MO>-</MO> <MO>-</MO> <MO>-</MO> <MROW><MO>(</MO> <MN>21</MN> <MO>)</MO> </MROW></MROW>]]&gt;</MATH></MATHS> <BR>其中W和H分别为图像的宽度和高度,D(i,j)的定义为 <BR><MATHS num="0040"><MATH><![CDATA[ <mrow><MI>D</MI> <MROW><MO>(</MO> <MI>i</MI> <MO>,</MO> <MI>j</MI> <MO>)</MO> </MROW><MO>=</MO> <MFENCED close="" open="{"><MTABLE><MTR><MTD><MN>0</MN> </MTD><MTD><MI>if</MI> </MTD><MTD><MSUB><MI>P</MI> <MN>1</MN> </MSUB><MROW><MO>(</MO> <MI>i</MI> <MO>,</MO> <MI>j</MI> <MO>)</MO> </MROW><MO>=</MO> <MSUB><MI>P</MI> <MN>2</MN> </MSUB><MROW><MO>(</MO> <MI>i</MI> <MO>,</MO> <MI>j</MI> <MO>)</MO> </MROW><MO>,</MO> </MTD></MTR><MTR><MTD><MN>1</MN> </MTD><MTD><MI>if</MI> </MTD><MTD><MSUB><MI>P</MI> <MN>1</MN> </MSUB><MROW><MO>(</MO> <MI>i</MI> <MO>,</MO> <MI>j</MI> <MO>)</MO> </MROW><MO>&amp;NotEqual;</MO> <MSUB><MI>P</MI> <MN>2</MN> </MSUB><MROW><MO>(</MO> <MI>i</MI> <MO>,</MO> <MI>j</MI> <MO>)</MO> </MROW><MO>.</MO> </MTD></MTR></MTABLE></MFENCED><MO>-</MO> <MO>-</MO> <MO>-</MO> <MROW><MO>(</MO> <MN>22</MN> <MO>)</MO> </MROW></MROW>]]&gt;</MATH></MATHS> <BR>对于两幅纯随机图像,其NPCR理论值为 <BR><MATHS num="0041"><MATH><![CDATA[ <mrow><MSUB><MI>NPCR</MI> <MI>expected</MI> </MSUB><MO>=</MO> <MROW><MO>(</MO> <MN>1</MN> <MO>-</MO> <MFRAC><MN>1</MN> <MSUP><MN>2</MN> <MROW><MSUB><MI>log</MI> <MN>2</MN> </MSUB><MI>L</MI> </MROW></MSUP></MFRAC><MO>)</MO> </MROW><MO>×</MO> <MN>100</MN> <MO>%</MO> <MO>,</MO> <MO>-</MO> <MO>-</MO> <MO>-</MO> <MROW><MO>(</MO> <MN>23</MN> <MO>)</MO> </MROW></MROW>]]&gt;</MATH></MATHS> <BR>其中L为图像的灰度级别。例如,对于2幅256级灰度纯随机图像,其NPCR理论值为99.61%。UACI用于测试两图像间的灰度差异强度,其定义为 <BR><MATHS num="0042"><MATH><![CDATA[ <mrow><MI>UACI</MI> <MO>=</MO> <MFRAC><MN>1</MN> <MROW><MI>W</MI> <MO>×</MO> <MI>H</MI> </MROW></MFRAC><MO>[</MO> <MUNDEROVER><MI>Σ</MI> <MROW><MI>i</MI> <MO>=</MO> <MN>1</MN> </MROW><MI>W</MI> </MUNDEROVER><MUNDEROVER><MI>Σ</MI> <MROW><MI>j</MI> <MO>=</MO> <MN>1</MN> </MROW><MI>H</MI> </MUNDEROVER><MFRAC><MROW><MO>|</MO> <MSUB><MI>P</MI> <MN>1</MN> </MSUB><MROW><MO>(</MO> <MI>i</MI> <MO>,</MO> <MI>j</MI> <MO>)</MO> </MROW><MO>-</MO> <MSUB><MI>P</MI> <MN>2</MN> </MSUB><MROW><MO>(</MO> <MI>i</MI> <MO>,</MO> <MI>j</MI> <MO>)</MO> </MROW><MO>|</MO> </MROW><MROW><MI>L</MI> <MO>-</MO> <MN>1</MN> </MROW></MFRAC><MO>]</MO> <MO>×</MO> <MN>100</MN> <MO>%</MO> <MO>.</MO> <MO>-</MO> <MO>-</MO> <MO>-</MO> <MROW><MO>(</MO> <MN>22</MN> <MO>)</MO> </MROW></MROW>]]&gt;</MATH></MATHS> <BR>对于两幅纯随机图像,其UACI理论值为 <BR><MATHS num="0043"><MATH><![CDATA[ <mrow><MSUB><MI>UACI</MI> <MI>expected</MI> </MSUB><MO>=</MO> <MFRAC><MN>1</MN> <MSUP><MI>L</MI> <MN>2</MN> </MSUP></MFRAC><MROW><MO>(</MO> <MFRAC><MROW><MUNDEROVER><MI>Σ</MI> <MROW><MI>i</MI> <MO>=</MO> <MN>1</MN> </MROW><MROW><MI>L</MI> <MO>-</MO> <MN>1</MN> </MROW></MUNDEROVER><MI>i</MI> <MROW><MO>(</MO> <MI>i</MI> <MO>+</MO> <MN>1</MN> <MO>)</MO> </MROW></MROW><MROW><MI>L</MI> <MO>-</MO> <MN>1</MN> </MROW></MFRAC><MO>)</MO> </MROW><MO>×</MO> <MN>100</MN> <MO>%</MO> <MO>.</MO> <MO>-</MO> <MO>-</MO> <MO>-</MO> <MROW><MO>(</MO> <MN>23</MN> <MO>)</MO> </MROW></MROW>]]&gt;</MATH></MATHS> <BR>例如,对于2幅256级灰度纯随机图像,其NPCR理论值为33.46%。 <BR>对于一个设计良好的图像加密系统,其NPCR与UACI应尽可能接近于理论值。基于以上讨论,这里假设一种最极端情况来对系统进行测试,即两幅明文图像只在右下角有一个像素点的差异,如图11(a),(b)所示。基于相同密钥加密得到的密文图像以及两幅密文图像间的差值分别如图11(c),(d),(e)所示。通过计算得到两幅密文图像间的NPCR值为99.59%,UACI值为33.45%。 <BR>基于以上测试结论可知,本发明可以有效抵御差分攻击。 <BR>综上所述,本发明具有良好的安全性,可有效抵御各类常见的攻击手段。</p> </div> </div> </div> </div> <div class="page_view" id="pageContainer" oncontextmenu="return false"> <script language="javascript"> $(document).ready(function() { initPage(); $("#loading").hide(); });</script> <!--end documenttopic--> </div> <div id="outer_page_more" style="margin-bottom:20px;background-color:#FFF; overflow:hidden;"> <div class="inner_page_more" id="page_more" style="width: 917px; overflow:hidden;border:solid 1px #ccc;box-shadow:0 1px 5px #ccc; height: 260px; line-height: 30px;"> <div id="html-reader-go-more" class="banner-wrap more-btn-banner" style="padding-top: 40px; width: 920px; position:relative;"> <div id="loading" style="text-align:center;width: 920px; padding-bottom:100px; font-size: 18px; line-height:40px;"> <img src="images/loading.gif" alt="" /><br /> 文档加载中……请稍候!<br /> <a href="p-6420310.html" style="color:blue;text-decoration:underline;">如果长&#22826;&#38451;&#22478;&#38598;&#22242;未打开,您也可以点击刷新试试。</a> </div> <p style="text-align: center; font-size: 18px;"> <span id="ftip">下载文档到电脑,查找使用更方便.(PDF附带说明图片)</span></p> <p style="text-align: center; font-size: 14px;"> <b></b><span><b style="color: #ff0000"> 30</b> 金币</span> &nbsp;&nbsp;<span class="fcff">0人已下载</span></p> <p style="text-align: center; padding-top: 10px;"> <table style="margin:0px auto;"><tr><td> <a href="javascript:;" onclick="DownLoad()" class="ui-bz-btn-senior banner-download" style="padding: 5px 35px; font-size: 15px; text-decoration: none"><b style="color: #fff">下载</b></a></td><td>&nbsp;&nbsp; <a href="UserManage/Recharge.aspx?f=0" class="ui-bz-btn-senior2 banner-download" style="padding: 5px 35px; font-size: 15px; text-decoration: none"><b style="color: #fff">加入VIP,免费下载资源</b></a></td></tr> </table> </p> <p id="ntip" style="text-align: center; padding-top: 30px;"> <div id="ntip2" class="banner-more-btn" style="text-align: center; display:block; width: 250px; margin:0px auto;" onclick="showmorepage()"> <span class="moreBtn goBtn" style="text-align: center"><span>还剩<span id="spanpage"></span>页未读,</span><span class="fc2e">继续阅读</span></span><p class="down-arrow goBtn"> </p> </div> </p> </div> </div> <div class="b_tl"> </div> <div class="b_tr"> </div> <div class="b_br"> </div> <div class="b_bl"> </div> <div class="b_t"> </div> <div class="b_r"> </div> <div class="b_b"> </div> <div class="b_l"> </div> </div> <div class="works-manage-box shenshu"> <a href="javascript:jubao()" title="举报" class="fLeft works-manage-item works-manage-report"> <span class="inline-block ico "> <img src="images/jubao.jpg" alt="举报"></span> <br> 举报</a> <a href="UserManage/CopyrightAppeal.aspx?bid=6420310" title="版权申诉" class="fLeft works-manage-item works-manage-report" target="_blank" <span class="inline-block ico"> <img src="images/bang_tan.gif" width="18" alt="版权申诉"></span> <br> 版权申诉</a> <a class="fLeft" style="display:block; padding-top:17px; padding-left:20px;font-size:14px;">word格式文档无特别注明外均可编辑修改;预览文档经过压缩,下载后原文更清晰! </a> <a href="d-6420310.html" title="点击进入下载" class="fr hover-none works-manage-download"> <em class="mr5">立即下载</em><span class="download-ico2 ico inline-block vertical-middle"></span></a> <input type="hidden" value="1332" id="tu_id"> </div> <dl class="works-intro gray2 cl pb10" style="border-bottom: none; padding-bottom: 0"> <dt class="fl">关&nbsp;键&nbsp;词:</dt><dd class="fl wordwrap" style="color:blue"> 基于 CAT 映射 混沌 LORENZ 系统 数字图像 加密 方法 </dd> </dl> <div class="works-intro gray2 c666"> <span class=" notice-ico"> <img src="images/bang_tan.gif" style="padding-left: 24px; vertical-align: middle"></span>&nbsp; 专利查询网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。 </div> <!--ta的资源--> <div class="mt10 related-pic-box" id="brandlist" style="height: 418px;"> <div class="works-comment-hd"> ta的资源 <a href="u-254.html" class="fr" style="font-size: 12px; font-weight: normal" hidefocus="true" target="_blank">更多&gt;&gt;</a></div> <div id="related-pic-list" class="related-pic-list cl" style="padding-left:12px; padding-right:0px;"> <ul> <li><h3><a href="http://zh228.com/p-9918.html" target="_parent" title="一种治疗慢性胃炎的药剂.pdf"> <img src='http://zh228.com/fileroot1/2018-1/11/750050ad-d8b8-4fa2-a6b9-dfbb4e3dd931/pic1.gif' alt="一种治疗慢性胃炎的药剂.pdf" onerror="this.src='images/d_pdf.png'"> 一种治疗慢性胃炎的药剂.pdf </a></h3></li> <li><h3><a href="http://zh228.com/p-9919.html" target="_parent" title="一种治疗躁狂症的药物.pdf"> <img src='http://zh228.com/fileroot1/2018-1/11/8aceb107-8bb1-49a3-b44b-7c00b94c2809/pic1.gif' alt="一种治疗躁狂症的药物.pdf" onerror="this.src='images/d_pdf.png'"> 一种治疗躁狂症的药物.pdf </a></h3></li> <li><h3><a href="http://zh228.com/p-9923.html" target="_parent" title="一种排肺脏毒的方法.pdf"> <img src='http://zh228.com/fileroot1/2018-1/11/f8b2fcf6-4374-4b3c-982f-306da881f8a5/pic1.gif' alt="一种排肺脏毒的方法.pdf" onerror="this.src='images/d_pdf.png'"> 一种排肺脏毒的方法.pdf </a></h3></li> <li><h3><a href="http://zh228.com/p-9941.html" target="_parent" title="一种降低中药材中重金属的方法.pdf"> <img src='http://zh228.com/fileroot1/2018-1/11/e9889eef-2b43-46a3-bbb2-b4d1e12a8b23/pic1.gif' alt="一种降低中药材中重金属的方法.pdf" onerror="this.src='images/d_pdf.png'"> 一种降低中药材中重金属的方法.pdf </a></h3></li> <li><h3><a href="http://zh228.com/p-10001.html" target="_parent" title="一种手拉线锯.pdf"> <img src='http://zh228.com/fileroot1/2018-1/11/ea025793-3584-4c83-8880-06007a658c2c/pic1.gif' alt="一种手拉线锯.pdf" onerror="this.src='images/d_pdf.png'"> 一种手拉线锯.pdf </a></h3></li> <li><h3><a href="http://zh228.com/p-10021.html" target="_parent" title="一种高精度牵引式线缆计米器.pdf"> <img src='http://zh228.com/fileroot1/2018-1/11/d665764b-f436-4e63-8443-3f3b4d16cdbc/pic1.gif' alt="一种高精度牵引式线缆计米器.pdf" onerror="this.src='images/d_pdf.png'"> 一种高精度牵引式线缆计米器.pdf </a></h3></li> <li><h3><a href="http://zh228.com/p-10030.html" target="_parent" title="一种用于相对运动的两物体之间的无线通信装置.pdf"> <img src='http://zh228.com/fileroot1/2018-1/11/56548701-7991-47b0-b0a2-b590e42024bb/pic1.gif' alt="一种用于相对运动的两物体之间的无线通信装置.pdf" onerror="this.src='images/d_pdf.png'"> 一种用于相对运动的两物体之间的无线通信装置.pdf </a></h3></li> <li><h3><a href="http://zh228.com/p-10034.html" target="_parent" title="具有含横向主数据轨和纵向次数据轨的带介质的旋转头数据存储和检索系统以及方法.pdf"> <img src='http://zh228.com/fileroot1/2018-1/11/c31fa0c8-b729-47f4-8a5f-a909b3566b7b/pic1.gif' alt="具有含横向主数据轨和纵向次数据轨的带介质的旋转头数据存储和检索系统以及方法.pdf" onerror="this.src='images/d_pdf.png'"> 具有含横向主数据轨和纵向次数据轨的带介质的旋转头数据存储和检索系统以及方法.pdf </a></h3></li> <li><h3><a href="http://zh228.com/p-10090.html" target="_parent" title="列车内部网络管理系统.pdf"> <img src='http://zh228.com/fileroot1/2018-1/11/5449983e-89c8-4bd2-a24f-29a592f79fec/pic1.gif' alt="列车内部网络管理系统.pdf" onerror="this.src='images/d_pdf.png'"> 列车内部网络管理系统.pdf </a></h3></li> <li><h3><a href="http://zh228.com/p-10181.html" target="_parent" title="在瓣膜布置过程中感测心脏传导系统.pdf"> <img src='http://zh228.com/fileroot1/2018-1/11/3ed767ef-5bcf-4183-84b6-eb95fe8c7e9b/pic1.gif' alt="在瓣膜布置过程中感测心脏传导系统.pdf" onerror="this.src='images/d_pdf.png'"> 在瓣膜布置过程中感测心脏传导系统.pdf </a></h3></li> <li><h3><a href="http://zh228.com/p-10229.html" target="_parent" title="用于监控机动车电能存储器充电的安全装置和用于运行用于监控机动车电能存储器充电的安全装置的方法.pdf"> <img src='http://zh228.com/fileroot1/2018-1/11/124c9bb9-6781-40ad-9749-ec1285e5f217/pic1.gif' alt="用于监控机动车电能存储器充电的安全装置和用于运行用于监控机动车电能存储器充电的安全装置的方法.pdf" onerror="this.src='images/d_pdf.png'"> 用于监控机动车电能存储器充电的安全装置和用于运行用于监控机动车电能存储器充电的安全装置的方法.pdf </a></h3></li> <li><h3><a href="http://zh228.com/p-10270.html" target="_parent" title="钢渣基金属氧化物固体碱催化剂制备方法及其应用.pdf"> <img src='http://zh228.com/fileroot1/2018-1/11/58611b48-fd40-401e-b12d-1a50fa849d67/pic1.gif' alt="钢渣基金属氧化物固体碱催化剂制备方法及其应用.pdf" onerror="this.src='images/d_pdf.png'"> 钢渣基金属氧化物固体碱催化剂制备方法及其应用.pdf </a></h3></li> <li><h3><a href="http://zh228.com/p-10273.html" target="_parent" title="一种机械化修井作业管柱自动扶正系统及方法.pdf"> <img src='http://zh228.com/fileroot1/2018-1/11/0f70d3f9-46e5-448b-a6f0-bb0d34952ab6/pic1.gif' alt="一种机械化修井作业管柱自动扶正系统及方法.pdf" onerror="this.src='images/d_pdf.png'"> 一种机械化修井作业管柱自动扶正系统及方法.pdf </a></h3></li> <li><h3><a href="http://zh228.com/p-10291.html" target="_parent" title="一种甲醇三级过滤反洗装置.pdf"> <img src='http://zh228.com/fileroot1/2018-1/11/382fdfa1-54f5-4f49-b1c5-22840838a1c2/pic1.gif' alt="一种甲醇三级过滤反洗装置.pdf" onerror="this.src='images/d_pdf.png'"> 一种甲醇三级过滤反洗装置.pdf </a></h3></li> <li><h3><a href="http://zh228.com/p-10301.html" target="_parent" title="用于管线光纤布设的内衬安装管.pdf"> <img src='http://zh228.com/fileroot1/2018-1/11/2efa27f1-ed26-461f-8f12-b618a898d56d/pic1.gif' alt="用于管线光纤布设的内衬安装管.pdf" onerror="this.src='images/d_pdf.png'"> 用于管线光纤布设的内衬安装管.pdf </a></h3></li> <li><h3><a href="http://zh228.com/p-10310.html" target="_parent" title="一种变频空调器.pdf"> <img src='http://zh228.com/fileroot1/2018-1/11/ad193644-93ef-4934-ac38-5a4c7b92b970/pic1.gif' alt="一种变频空调器.pdf" onerror="this.src='images/d_pdf.png'"> 一种变频空调器.pdf </a></h3></li> </ul> </div> </div> <div class="mt10 related-pic-box" id="Div1" style="height: 418px;"> <div class="works-comment-hd"> 猜你喜欢 </div> <div id="related-pic-list" class="related-pic-list cl" style="padding-left:12px; padding-right:0px;"> <ul> <li><h3><a href="http://zh228.com/p-4008179.html" target="_parent" title="一种升降式旋转室外消火栓.pdf"> <img src='http://zh228.com/fileroot2/2018-8/11/5e9ec000-87db-4ffb-b75b-ff86224fd06f/pic1.gif' alt="一种升降式旋转室外消火栓.pdf" onerror="this.src='images/d_pdf.png'"> 一种升降式旋转室外消火栓.pdf </a></h3></li> <li><h3><a href="http://zh228.com/p-4008180.html" target="_parent" title="框架结构T型连接柱.pdf"> <img src='http://zh228.com/fileroot2/2018-8/11/220dddf1-7140-4fb8-a97d-c913dce7104c/pic1.gif' alt="框架结构T型连接柱.pdf" onerror="this.src='images/d_pdf.png'"> 框架结构T型连接柱.pdf </a></h3></li> <li><h3><a href="http://zh228.com/p-4008181.html" target="_parent" title="防静电地板吸板器.pdf"> <img src='http://zh228.com/fileroot2/2018-8/11/5f9c9b7d-ae79-4a2b-801e-bdc07b0c49b8/pic1.gif' alt="防静电地板吸板器.pdf" onerror="this.src='images/d_pdf.png'"> 防静电地板吸板器.pdf </a></h3></li> <li><h3><a href="http://zh228.com/p-4008182.html" target="_parent" title="一种建筑用箱体或井口预留孔洞活动模具.pdf"> <img src='http://zh228.com/fileroot2/2018-8/11/35645316-7e87-44dd-8cff-b3a259a64e65/pic1.gif' alt="一种建筑用箱体或井口预留孔洞活动模具.pdf" onerror="this.src='images/d_pdf.png'"> 一种建筑用箱体或井口预留孔洞活动模具.pdf </a></h3></li> <li><h3><a href="http://zh228.com/p-4008183.html" target="_parent" title="速成拉建房屋.pdf"> <img src='http://zh228.com/fileroot2/2018-8/11/ff9fedc6-ea08-4491-b7fd-a6d5ff7fd2bf/pic1.gif' alt="速成拉建房屋.pdf" onerror="this.src='images/d_pdf.png'"> 速成拉建房屋.pdf </a></h3></li> <li><h3><a href="http://zh228.com/p-4008184.html" target="_parent" title="预制桥面板精轧螺纹钢筋弧形连接构造.pdf"> <img src='http://zh228.com/fileroot2/2018-8/11/6da57667-8573-4120-94e8-b445e46ab14d/pic1.gif' alt="预制桥面板精轧螺纹钢筋弧形连接构造.pdf" onerror="this.src='images/d_pdf.png'"> 预制桥面板精轧螺纹钢筋弧形连接构造.pdf </a></h3></li> <li><h3><a href="http://zh228.com/p-4008185.html" target="_parent" title="一种内固定式伸缩门滑行导轨及伸缩门.pdf"> <img src='http://zh228.com/fileroot2/2018-8/11/9358121a-3276-4570-86e9-dc7e443b76c6/pic1.gif' alt="一种内固定式伸缩门滑行导轨及伸缩门.pdf" onerror="this.src='images/d_pdf.png'"> 一种内固定式伸缩门滑行导轨及伸缩门.pdf </a></h3></li> <li><h3><a href="http://zh228.com/p-4008186.html" target="_parent" title="多用途封井器.pdf"> <img src='http://zh228.com/fileroot2/2018-8/11/15cedf57-9c4b-437c-ab90-89c73e22732e/pic1.gif' alt="多用途封井器.pdf" onerror="this.src='images/d_pdf.png'"> 多用途封井器.pdf </a></h3></li> <li><h3><a href="http://zh228.com/p-4008187.html" target="_parent" title="一种新型圆弧建筑模板紧固件.pdf"> <img src='http://zh228.com/fileroot2/2018-8/11/9182fb2a-aad8-4fb9-88c8-613605ee4022/pic1.gif' alt="一种新型圆弧建筑模板紧固件.pdf" onerror="this.src='images/d_pdf.png'"> 一种新型圆弧建筑模板紧固件.pdf </a></h3></li> <li><h3><a href="http://zh228.com/p-4008188.html" target="_parent" title="一种超实木防水组合踢脚线.pdf"> <img src='http://zh228.com/fileroot2/2018-8/11/52c86c71-f6de-4545-b883-c3794b832a03/pic1.gif' alt="一种超实木防水组合踢脚线.pdf" onerror="this.src='images/d_pdf.png'"> 一种超实木防水组合踢脚线.pdf </a></h3></li> <li><h3><a href="http://zh228.com/p-4008189.html" target="_parent" title="电气柜前门板门锁装置.pdf"> <img src='http://zh228.com/fileroot2/2018-8/11/a0d13ca8-9b31-4b84-b344-e4d8e77f216a/pic1.gif' alt="电气柜前门板门锁装置.pdf" onerror="this.src='images/d_pdf.png'"> 电气柜前门板门锁装置.pdf </a></h3></li> <li><h3><a href="http://zh228.com/p-4008190.html" target="_parent" title="双人正杆器.pdf"> <img src='http://zh228.com/fileroot2/2018-8/11/7f38f744-bc75-43f1-bf05-deca3e7ee561/pic1.gif' alt="双人正杆器.pdf" onerror="this.src='images/d_pdf.png'"> 双人正杆器.pdf </a></h3></li> <li><h3><a href="http://zh228.com/p-4008191.html" target="_parent" title="一种纳米铝塑复合板.pdf"> <img src='http://zh228.com/fileroot2/2018-8/11/c94dd76d-328d-45c3-a2a5-c8ba49402c75/pic1.gif' alt="一种纳米铝塑复合板.pdf" onerror="this.src='images/d_pdf.png'"> 一种纳米铝塑复合板.pdf </a></h3></li> <li><h3><a href="http://zh228.com/p-4008192.html" target="_parent" title="强磁打捞器.pdf"> <img src='http://zh228.com/fileroot2/2018-8/11/098cea96-5ab9-4a03-b4f5-2d600b9419c1/pic1.gif' alt="强磁打捞器.pdf" onerror="this.src='images/d_pdf.png'"> 强磁打捞器.pdf </a></h3></li> <li><h3><a href="http://zh228.com/p-4008193.html" target="_parent" title="一种基于无刷直流电机的环卫车电动扫盘系统.pdf"> <img src='http://zh228.com/fileroot2/2018-8/11/cb0df5bd-cda7-45a5-a30d-c3b982a54de1/pic1.gif' alt="一种基于无刷直流电机的环卫车电动扫盘系统.pdf" onerror="this.src='images/d_pdf.png'"> 一种基于无刷直流电机的环卫车电动扫盘系统.pdf </a></h3></li> <li><h3><a href="http://zh228.com/p-4008194.html" target="_parent" title="一种可调节型门铰链.pdf"> <img src='http://zh228.com/fileroot2/2018-8/11/5afe6325-3e64-4090-b286-d85483b3ae14/pic1.gif' alt="一种可调节型门铰链.pdf" onerror="this.src='images/d_pdf.png'"> 一种可调节型门铰链.pdf </a></h3></li> <li><h3><a href="http://zh228.com/p-4008195.html" target="_parent" title="一种用于基桩竖向抗压静载试验的船筏式试验装置.pdf"> <img src='http://zh228.com/fileroot2/2018-8/11/a091ae98-437a-423f-9f68-daa2fa0c9016/pic1.gif' alt="一种用于基桩竖向抗压静载试验的船筏式试验装置.pdf" onerror="this.src='images/d_pdf.png'"> 一种用于基桩竖向抗压静载试验的船筏式试验装置.pdf </a></h3></li> <li><h3><a href="http://zh228.com/p-4008196.html" target="_parent" title="免贴墙砖.pdf"> <img src='http://zh228.com/fileroot2/2018-8/11/ff37b51c-52d6-45fa-9e54-d753910e1900/pic1.gif' alt="免贴墙砖.pdf" onerror="this.src='images/d_pdf.png'"> 免贴墙砖.pdf </a></h3></li> <li><h3><a href="http://zh228.com/p-4008197.html" target="_parent" title="一种聚氨酯仿石材防火保温装饰复合板.pdf"> <img src='http://zh228.com/fileroot2/2018-8/11/3e44aab3-a9c5-4146-a7e9-74701e05ded3/pic1.gif' alt="一种聚氨酯仿石材防火保温装饰复合板.pdf" onerror="this.src='images/d_pdf.png'"> 一种聚氨酯仿石材防火保温装饰复合板.pdf </a></h3></li> <li><h3><a href="http://zh228.com/p-4008198.html" target="_parent" title="挖掘机液压回路.pdf"> <img src='http://zh228.com/fileroot2/2018-8/11/2805266b-bdbe-46cf-bdda-0f1b1c9451ae/pic1.gif' alt="挖掘机液压回路.pdf" onerror="this.src='images/d_pdf.png'"> 挖掘机液压回路.pdf </a></h3></li> <li><h3><a href="http://zh228.com/p-4008199.html" target="_parent" title="一种钢管钩卡扣件.pdf"> <img src='http://zh228.com/fileroot2/2018-8/11/b05cab00-3447-48da-8fcc-794dc4d12a77/pic1.gif' alt="一种钢管钩卡扣件.pdf" onerror="this.src='images/d_pdf.png'"> 一种钢管钩卡扣件.pdf </a></h3></li> <li><h3><a href="http://zh228.com/p-4008200.html" target="_parent" title="一种专用于煤矿坑道钻机的钻机移动用滚动滑轨.pdf"> <img src='http://zh228.com/fileroot2/2018-8/11/bf1bb3e9-6065-443c-8aa0-92d0d9beb7f4/pic1.gif' alt="一种专用于煤矿坑道钻机的钻机移动用滚动滑轨.pdf" onerror="this.src='images/d_pdf.png'"> 一种专用于煤矿坑道钻机的钻机移动用滚动滑轨.pdf </a></h3></li> <li><h3><a href="http://zh228.com/p-4008201.html" target="_parent" title="护栏活动连接件.pdf"> <img src='http://zh228.com/fileroot2/2018-8/11/23764282-b1f6-430b-935c-df635c40f903/pic1.gif' alt="护栏活动连接件.pdf" onerror="this.src='images/d_pdf.png'"> 护栏活动连接件.pdf </a></h3></li> <li><h3><a href="http://zh228.com/p-4008202.html" target="_parent" title="一种便携式绝缘折叠梯.pdf"> <img src='http://zh228.com/fileroot2/2018-8/11/ae6d299c-ff8a-4291-aebf-662dca40944c/pic1.gif' alt="一种便携式绝缘折叠梯.pdf" onerror="this.src='images/d_pdf.png'"> 一种便携式绝缘折叠梯.pdf </a></h3></li> <li><h3><a href="http://zh228.com/p-4008203.html" target="_parent" title="一种污水二次利用装置.pdf"> <img src='http://zh228.com/fileroot2/2018-8/11/20abc34b-cf41-478a-8c8f-5f139bbd97d9/pic1.gif' alt="一种污水二次利用装置.pdf" onerror="this.src='images/d_pdf.png'"> 一种污水二次利用装置.pdf </a></h3></li> <li><h3><a href="http://zh228.com/p-4008204.html" target="_parent" title="敞开式硬岩掘进机人字形溜渣系统.pdf"> <img src='http://zh228.com/fileroot2/2018-8/11/cc323291-5e5e-4ac4-867d-dc932e4f7021/pic1.gif' alt="敞开式硬岩掘进机人字形溜渣系统.pdf" onerror="this.src='images/d_pdf.png'"> 敞开式硬岩掘进机人字形溜渣系统.pdf </a></h3></li> <li><h3><a href="http://zh228.com/p-4008205.html" target="_parent" title="一种多功能地漏.pdf"> <img src='http://zh228.com/fileroot2/2018-8/11/471f0bdd-7438-460f-a988-e8300a8d38e9/pic1.gif' alt="一种多功能地漏.pdf" onerror="this.src='images/d_pdf.png'"> 一种多功能地漏.pdf </a></h3></li> <li><h3><a href="http://zh228.com/p-4008206.html" target="_parent" title="车载便携式隔离带礅清洗机.pdf"> <img src='http://zh228.com/fileroot2/2018-8/11/f74abfd0-63fe-4c8e-9e51-9cc47424b8a6/pic1.gif' alt="车载便携式隔离带礅清洗机.pdf" onerror="this.src='images/d_pdf.png'"> 车载便携式隔离带礅清洗机.pdf </a></h3></li> <li><h3><a href="http://zh228.com/p-4008207.html" target="_parent" title="三节加长臂.pdf"> <img src='http://zh228.com/fileroot2/2018-8/11/3c284130-e087-416a-9b7b-7ba64342b865/pic1.gif' alt="三节加长臂.pdf" onerror="this.src='images/d_pdf.png'"> 三节加长臂.pdf </a></h3></li> <li><h3><a href="http://zh228.com/p-4008208.html" target="_parent" title="横条纹压型两门大柜.pdf"> <img src='http://zh228.com/fileroot2/2018-8/11/ade9431d-2241-4d2b-af63-0138593ed8fe/pic1.gif' alt="横条纹压型两门大柜.pdf" onerror="this.src='images/d_pdf.png'"> 横条纹压型两门大柜.pdf </a></h3></li> <li><h3><a href="http://zh228.com/p-4008209.html" target="_parent" title="司机门.pdf"> <img src='http://zh228.com/fileroot2/2018-8/11/cb551352-99e0-4eb0-be73-32e0dc1aa569/pic1.gif' alt="司机门.pdf" onerror="this.src='images/d_pdf.png'"> 司机门.pdf </a></h3></li> <li><h3><a href="http://zh228.com/p-4008210.html" target="_parent" title="机械锁防雨罩.pdf"> <img src='http://zh228.com/fileroot2/2018-8/11/2c91e4cf-0a84-46c5-aab9-a15c0f00e553/pic1.gif' alt="机械锁防雨罩.pdf" onerror="this.src='images/d_pdf.png'"> 机械锁防雨罩.pdf </a></h3></li> </ul> </div> </div> <!--评论区--> <!--评论区--> <div class="mt10 works-comment"> <div class="works-comment-hd"> <span class="font-tahoma">&#22826;&#38451;&#22478;&#38598;&#22242;本文</div> <div style="line-height: 25px; padding: 10px 20px;"> 本文标题:基于CAT映射与超混沌LORENZ系统的数字图像加密方法.pdf<br /> 链接地址:<a href="http://zh228.com/p-6420310.html">http://zh228.com/p-6420310.html</a><br /> </div> </div> </div> <div class="boxright" id="boxright"> <div class="fr detail-aside" id="Div11" style="width:270px;"> <div class="box hot-keywords mt10" style="width: 268px;" id="relatebox0"> <div class="boxHd" style="padding-bottom: 0px;"> <div class="fl nt-ico mr5 ml13 ico" style="margin-top: 3px;"> </div> <h2 class="fl font-normal font16 font-yahei" style="font-size: 16px; font-weight: 100; margin-left: 0px; margin-top: 3px; font-family: 微软雅黑"> 当前资源&#22826;&#38451;&#22478;&#38598;&#22242;</h2> </div> <div id="Div2" class="author-works-list bgF" style="overflow: hidden; padding:10px 10px; "> <table><tr><td> <dt class="author-avatar-box fl"><a class="author-avatar" title="a2" href="u-254.html"> <img src="http://zh228.com/FlexPaper/ZoomImage/UploadPhoto/tx_20181218222953.png" onerror="this.src='images/noavatar_small.gif'" alt="a2"></a> </dt></td><td> <div class="author-name fl w100 ellipsis"> <a href="u-254.html" target="_blank"> a2</a><img style="height:15px; width:20px; overflow:hidden; margin-right:10px;background:url(images/bg_index_ie6_781d95ab.png) no-repeat -185px 4px;display:none" src="images/s.gif" alt="企业认证" title="企业认证"/></div> <div class="author-level-bar"> <span class="mr5 author-grade author-grade5" title="会员等级"></span> </div></td></tr></table> <div class="fl" style="width: 240px;"> <p class="kh_cpZl"> 编号: cj20190712084642889142</p> <p class="kh_cpZl"> 类型: 共享资源</p> <p class="kh_cpZl"> 格式: PDF</p> <p class="kh_cpZl">&#22826;&#38451;&#22478;&#38598;&#22242; 大小: 13.57MB</p> <p class="kh_cpZl"> 上传&#22826;&#38451;&#22478;&#38598;&#22242;: 2019-07-12</p> </div> </div> </div> <div class="box hot-keywords mt10" style="height: 380px; overflow: hidden;" id="relatebox"> <div class="boxHd" style="padding-bottom: 0px;"> <div class="fl keywords-ico mr5 ml13 ico"> </div> <h2 class="fl font-normal font16 font-yahei" style="font-size: 16px; font-weight: 100; margin-left: 0px; margin-top: 3px; font-family: 微软雅黑"> 相关资源</h2> </div> <div id="author-works-list" class="author-works-list bgF" style="height: 314px; overflow: auto"> <li> <h2><img alt="通信系统、通信装置和通信方法.pdf" class="pdf" src="Images/s.gif" /><a target="_parent" href="http://zh228.com/p-6421397.html" title="通信系统、通信装置和通信方法.pdf">通信系统、通信装置和通信方法.pdf</a></h2> </li> <li> <h2><img alt="数据通信.pdf" class="pdf" src="Images/s.gif" /><a target="_parent" href="http://zh228.com/p-6421394.html" title="数据通信.pdf">数据通信.pdf</a></h2> </li> <li> <h2><img alt="扬声器部件.pdf" class="pdf" src="Images/s.gif" /><a target="_parent" href="http://zh228.com/p-6421391.html" title="扬声器部件.pdf">扬声器部件.pdf</a></h2> </li> <li> <h2><img alt="分配签名序列的方法.pdf" class="pdf" src="Images/s.gif" /><a target="_parent" href="http://zh228.com/p-6421387.html" title="分配签名序列的方法.pdf">分配签名序列的方法.pdf</a></h2> </li> <li> <h2><img alt="移动通信系统、基站装置、用户装置以及方法.pdf" class="pdf" src="Images/s.gif" /><a target="_parent" href="http://zh228.com/p-6421386.html" title="移动通信系统、基站装置、用户装置以及方法.pdf">移动通信系统、基站装置、用户装置以及方法.pdf</a></h2> </li> <li> <h2><img alt="解码设备和方法.pdf" class="pdf" src="Images/s.gif" /><a target="_parent" href="http://zh228.com/p-6421384.html" title="解码设备和方法.pdf">解码设备和方法.pdf</a></h2> </li> <li> <h2><img alt="用于小区中继的承载QOS映射.pdf" class="pdf" src="Images/s.gif" /><a target="_parent" href="http://zh228.com/p-6421380.html" title="用于小区中继的承载QOS映射.pdf">用于小区中继的承载QOS映射.pdf</a></h2> </li> <li> <h2><img alt="以不同的功率电平生成接入点信标的方法和装置.pdf" class="pdf" src="Images/s.gif" /><a target="_parent" href="http://zh228.com/p-6421379.html" title="以不同的功率电平生成接入点信标的方法和装置.pdf">以不同的功率电平生成接入点信标的方法和装置.pdf</a></h2> </li> <li> <h2><img alt="移动网络用户面数据路由的方法、装置和系统.pdf" class="pdf" src="Images/s.gif" /><a target="_parent" href="http://zh228.com/p-6421377.html" title="移动网络用户面数据路由的方法、装置和系统.pdf">移动网络用户面数据路由的方法、装置和系统.pdf</a></h2> </li> <li> <h2><img alt="用于UWB脉冲型多天线通信系统的低PAPR空时编码方法.pdf" class="pdf" src="Images/s.gif" /><a target="_parent" href="http://zh228.com/p-6421376.html" title="用于UWB脉冲型多天线通信系统的低PAPR空时编码方法.pdf">用于UWB脉冲型多天线通信系统的低PAPR空时编码方法.pdf</a></h2> </li> <li> <h2><img alt="正交频分复用系统的小区间干扰减轻方法和装置及终端.pdf" class="pdf" src="Images/s.gif" /><a target="_parent" href="http://zh228.com/p-6421375.html" title="正交频分复用系统的小区间干扰减轻方法和装置及终端.pdf">正交频分复用系统的小区间干扰减轻方法和装置及终端.pdf</a></h2> </li></div> </div> <div class="box hot-keywords mt10" id="box3" style="overflow:hidden; width:268px;"> <div class="boxHd" style="border: none;padding-bottom: 0px;"> <div class="fl keywords-ico mr5 ml13 ico"> </div> <h2 class="fl font-normal font16 font-yahei" style="font-size: 16px; font-weight: 100; margin-left: 0px; margin-top: 3px; font-family: 微软雅黑"> 相关搜索</h2> </div> <div class="hot-keywords-list"> <a target="_blank" href="search.html?p=0&q=%e5%9f%ba%e4%ba%8e" class="tag-item ico" title="基于" hidefocus="true"><span class="ico"><em> 基于</em></span></a> <a target="_blank" href="search.html?p=0&q=CAT" class="tag-item ico" title="CAT" hidefocus="true"><span class="ico"><em> CAT</em></span></a> <a target="_blank" href="search.html?p=0&q=%e6%98%a0%e5%b0%84" class="tag-item ico" title="映射" hidefocus="true"><span class="ico"><em> 映射</em></span></a> <a target="_blank" href="search.html?p=0&q=%e6%b7%b7%e6%b2%8c" class="tag-item ico" title="混沌" hidefocus="true"><span class="ico"><em> 混沌</em></span></a> <a target="_blank" href="search.html?p=0&q=LORENZ" class="tag-item ico" title="LORENZ" hidefocus="true"><span class="ico"><em> LORENZ</em></span></a> <a target="_blank" href="search.html?p=0&q=%e7%b3%bb%e7%bb%9f" class="tag-item ico" title="系统" hidefocus="true"><span class="ico"><em> 系统</em></span></a> <a target="_blank" href="search.html?p=0&q=%e6%95%b0%e5%ad%97%e5%9b%be%e5%83%8f" class="tag-item ico" title="数字图像" hidefocus="true"><span class="ico"><em> 数字图像</em></span></a> <a target="_blank" href="search.html?p=0&q=%e5%8a%a0%e5%af%86" class="tag-item ico" title="加密" hidefocus="true"><span class="ico"><em> 加密</em></span></a> <a target="_blank" href="search.html?p=0&q=%e6%96%b9%e6%b3%95" class="tag-item ico" title="方法" hidefocus="true"><span class="ico"><em> 方法</em></span></a> <input name="ctl00$Content$hiddenCategoryID" type="hidden" id="Content_hiddenCategoryID" value="135" /> </div> </div> <div class="ad268 mt10"> <a href="http://www.xie-jue-tui-xiao.com/Notice.html?ID=36" rel="nofollow"><img src="http://zh228.com/FileUpload/Images/ad.jpg" width="270" height="270" /></a> </div> </div> </div> <!--end boxright--> <!--end layout01--> </div> <!--end mainpart--> </div> <script type="text/javascript">var Content_tvMenus_ImageArray = new Array('', '', '', '/WebResource.axd?d=PXa-I8BG-2tmYfSUdi9TZAky-cso8ydjMnbwOre1eQRNbWGPU5cZIrPue4s2u3KRrdfVQWbMuNjcvSiSJjKfd4A2tUMpBhuuTUfR07VGIV1SR0wB64NxaMwCFZ0GjJJw0&t=636995930740000000', '/WebResource.axd?d=Vvpq0L8gMDyH-Y9HrZop7kEcoaRRkYNeNRGL8svz8TOjK1cLCEwmsJmr_6gWqTA1BsNrs8Nia6f4PrQ4W8HUqOPl9Nt0NuHnzztIePbzZ0wOB0jEHLSyEplVz8S7iFE10&t=636995930740000000', '/WebResource.axd?d=vBddvhYATTTFmUttBwx4hBtHZDoULMUTiGroyFRmNGGoJAl-hjyoZ_HQpou4ElrgCZ3vScKMxXApxWdX65oSb723HH3hVpYUK7H8gJb7wul5Rg9fV_2G4dx5ywD0TJL80&t=636995930740000000');</script><div class="aspNetHidden"><input type="hidden" name="__VIEWSTATEGENERATOR" id="__VIEWSTATEGENERATOR" value="541A68AF" /></div><script type="text/javascript">WebForm_InitCallback();var Content_tvMenus_Data = new Object();Content_tvMenus_Data.images = Content_tvMenus_ImageArray;Content_tvMenus_Data.collapseToolTip = "折叠 {0}";Content_tvMenus_Data.expandToolTip = "展开 {0}";Content_tvMenus_Data.expandState = theForm.elements['Content_tvMenus_ExpandState'];Content_tvMenus_Data.selectedNodeID = theForm.elements['Content_tvMenus_SelectedNode'];(function() { for (var i=0;i<6;i++) { var preLoad = new Image(); if (Content_tvMenus_ImageArray[i].length > 0) preLoad.src = Content_tvMenus_ImageArray[i]; }})();Content_tvMenus_Data.lastIndex = 0;Content_tvMenus_Data.populateLog = theForm.elements['Content_tvMenus_PopulateLog'];Content_tvMenus_Data.treeViewID = 'ctl00$Content$tvMenus';Content_tvMenus_Data.name = 'Content_tvMenus_Data';</script></form> <div style="display: none" id="Div3"> <iframe src="BookRead.aspx?id=6420310" frameborder="0" style="width: 0px; height: 0px"> </iframe> </div> <script type="text/javascript" src="http://zh228.com/js/artDialog-5.0.3/artDialog.min.js"></script> <script type="text/javascript" src="http://zh228.com/js/view2.js"></script> <script type="text/javascript"> $(document).ready(function() { $("#spanpage").text(leftfilecount); var lf = mtp - (defaultShowPage); if(lf<=0) { $("#ftip").text("本资源只提供4页预览,全部文档请下载后查看!(PDF附带详细说明图)"); if($("#nftip"))$("#nftip").html("此文档不允许下载,在线阅读到最后一页了。"); $("#ntip2").hide(); $("#ntip").hide(); } window.setTimeout( function () { try { if(BookMarkPage == 1) { $(this).scrollTop(120); } else { Viewer._GotoPage(BookMarkPage); } }catch(e){} },200); if(defaultShowPage>0){ $("#outer_page_more").show();}else{ $("#outer_page_more").hide();} }); </script> <div id="jubao" class="jubao" style="display: none;"> <div class="jubaoTitle"> 举报类型</div> <ul> <li> <input type="radio" id="jubaoSel12" name="jubaoSel12" value="12" />&nbsp;&nbsp; <label for="jubaoSel12">广告或垃圾&#22826;&#38451;&#22478;&#38598;&#22242;</label> </li> <li> <input type="radio" id="jubaoSel13" name="jubaoSel13" value="13" />&nbsp;&nbsp; <label for="jubaoSel13">色情、淫秽、低俗&#22826;&#38451;&#22478;&#38598;&#22242;</label> </li> <li> <input type="radio" id="jubaoSel14" name="jubaoSel14" value="14" />&nbsp;&nbsp; <label for="jubaoSel14">反政府、反人类、反社会等反动&#22826;&#38451;&#22478;&#38598;&#22242;</label> </li> <li> <input type="radio" id="jubaoSel15" name="jubaoSel15" value="15" />&nbsp;&nbsp; <label for="jubaoSel15">散布赌博、暴力、凶杀、恐怖或者教唆犯罪等&#22826;&#38451;&#22478;&#38598;&#22242;</label> </li> <li> <input type="radio" id="jubaoSel16" name="jubaoSel16" value="16" />&nbsp;&nbsp; <label for="jubaoSel16">侮辱、诽谤等人身攻击&#22826;&#38451;&#22478;&#38598;&#22242;</label> </li> <li> <input type="radio" id="jubaoSel17" name="jubaoSel17" value="17" />&nbsp;&nbsp; <label for="jubaoSel17">散布谣言、扰乱社会秩序,破坏社会稳定等&#22826;&#38451;&#22478;&#38598;&#22242;</label> </li> <li style="text-align: center; height: 50px; margin-top: 10px;"> <input type="hidden" id="hidTypeID" /> <input type="button" onclick="saveJuBao()" value="提 交" />&nbsp;&nbsp;&nbsp;&nbsp;<input type="button" onclick="$('#jubao').hide();" value="取 消" /></li> </ul> </div> <div id="jubaoResponse" class="jubao" style="display: none;"> <div class="jubaoTitle"> 提示</div> <ul> <li> <h4 style="text-align: center; color: rgb(83, 136, 35);"> </h4> </li> <li style="text-align: center; height: 50px; margin-top: 10px;"> <input type="button" onclick="$('#jubaoResponse').hide();" value="关 闭" /> </ul> </div></div> <div class="tempdiv" style="display:none;line-height:0px;height:0px; overflow:hidden;"> </div> <script type="text/javascript"> Encoder.EncodeType = "entity"; var nodecode = '0000800004'; var adhtml = ""; var adarray = Encoder.htmlDecode(adhtml); initWidth(); var product_id = "6420310"; var product_code = "6420310"; var mtp = 4; var fCount = 20; var stp = 1; var lmt = 20; var ForceFreepage = parseInt('4'); if(lmt > ForceFreepage)lmt = ForceFreepage; var mhs = 595 * 842; var mhi = new Array("342774"); var mhls = new Array("0"); var mfvs = new Array("0"); var sw = 595; var sh = 842; var IsDealSwfSize = sw > 0; var minwidth=920; var BookMarkPage = parseInt('1'); var adpagecount = parseInt("3"); var defaultShowPage =parseInt( "3"); var defaultShowPage2 =defaultShowPage; var leftfilecount = fCount - defaultShowPage; if(leftfilecount<0)leftfilecount=0; var scorename = "金币"; var LimitText = '0'; var LimitButtonText = '现在购买'; var DocScoreDownLoad = parseFloat('30'); var ReadLimitDays = "365"; var bookrelArray = ""; var url_root = "http://zh228.com/"; var goumaiico = 'images/xiazai_1.gif'; var lmtext = ''; lmtext = '<div class="inner_page_more" id="page_more" style="width:930px; height:260px; line-height:30px;">' +'<div id="html-reader-go-more" class="banner-wrap more-btn-banner" style="padding-top:40px; width:930px;">' +'<p style="text-align:center;font-size:18px;">亲,很抱歉,此页已超出免费预览范围啦!<br/>您可以免费下载此资源,请下载查看!</p><p style="text-align:center;font-size:14px;">' +'<b></b><span><b style="color:#ff0000">30</b> 金币</span>' +'&nbsp;&nbsp;<span class="fcff">0人已下载</span>' +'</p><p style="text-align:center; padding-top:30px;">' +'<a href="javascript:;" onclick="DownLoad()" class="ui-bz-btn-senior banner-download" style="padding:5px 35px; font-size:15px; text-decoration:none">' +'<b style="color:#fff">下载到本地</b></a>' +'</p></div></div> '; var curtotalpage = defaultShowPage; function showmorepage() { var from = curtotalpage+1; var leftcount = ((mtp - curtotalpage)<defaultShowPage?mtp:(curtotalpage+defaultShowPage)); for (var i = from; i <=leftcount; i++) { Viewer._Addpage(i); curtotalpage+=1; } leftfilecount = mtp - (curtotalpage); Viewer._dfsp=curtotalpage; if(from<leftcount) { Viewer.InitAD_left(from,leftcount); showAd(); } if(leftfilecount<=0) { $("#ftip").text("本资源只提供4页预览,全部文档请下载后查看!(PDF附带详细说明图)"); if($("#nftip"))$("#nftip").html("此文档不允许下载,在线阅读到最后一页了。"); $("#ntip2").hide(); $("#ntip").hide(); } var st = ($(this).scrollTop()); $(this).scrollTop(st +1); $("#spanpage").text(fCount-curtotalpage); } function showmoretopage(to) { var from = curtotalpage+1; var leftcount = ((mtp - curtotalpage)<defaultShowPage?mtp:(curtotalpage+defaultShowPage)); if(to > leftcount)leftcount=to; for (var i = from; i <=leftcount; i++) { Viewer._Addpage(i); curtotalpage+=1; } leftfilecount = mtp - (curtotalpage); Viewer._dfsp=curtotalpage; if(from<leftcount) { Viewer.InitAD_left(from,leftcount); showAd(); } if(leftfilecount<=0) { $("#ftip").text("本资源只提供4页预览,全部文档请下载后查看!(PDF附带详细说明图)"); if($("#nftip"))$("#nftip").html("此文档不允许下载,在线阅读到最后一页了。"); $("#ntip2").hide(); $("#ntip").hide(); } $("#spanpage").text(fCount-curtotalpage); } function adss() {var st = ($(this).scrollTop())-2; $(this).scrollTop(st);} function showAd() { $(".addivp").each(function(){ var adindex = ($(this).attr("link")); var adid = ($(this).attr("id")); document.getElementById(adid).innerHTML = document.getElementById("adpre" + adindex).outerHTML; $("#adpre" + adindex).css({ margin: "0px auto" }); }); } </script> <script type="text/javascript"> var operateType = 1; var uid = "0"; var DocID = "6420310"; var zw = 595; var zh = 842; var zrate = (zw==0||zh==0)?1:(zh/zw); var isplay = 0; var width = "830"; var height = getClientHeight(); if (height < 560) height = 560; height = ('False' == 'True' ? 570 : height); var scorename = "金币"; var params = {}; </script> <script> $(function() { $("#jubao input[type='radio']").click(function() { $("#hidTypeID").val($(this).val()); }); }); function jubao() { var userid = '0'; if (userid != "" && userid != undefined && userid != "0") { $("#jubao").show(); } else { alert("请登录!"); window.location.href='login.aspx'; } } function saveJuBao() { var bookid = '6420310'; var type = $("#hidTypeID").val(); if (type != "" && type != undefined && bookid != "" && bookid != undefined) { $.ajax({ type: "post", url: "View.aspx/JuBao", data: "{bookid: '" + bookid + "', type: '" + type + "' }", contentType: "application/json; charset=utf-8", dataType: "json", success: function(data) { $("#jubao").hide(); $("#jubaoResponse").show(); if (data.d != "0") { $("#jubaoResponse h4").html("您的举报提交成功"); } else { $("#jubaoResponse h4").html("您的举报提交失败"); } } }); } else { alert("请选择投诉类型或者数据错误请刷新重试!"); } } $(function(){ $(document).bind("contextmenu",function(e){ return false; }); }); </script> <!-- JiaThis Button END --> <span id="LabelScript"></span> </div> </div> <!--foot--><div class="bg_100 foot_nav_bg" style=" min-width:1200px;"> <div class="foot_nav"> <a href="http://zh228.com/h-33.html" target="_blank" rel="nofollow">&#22826;&#38451;&#22478;&#38598;&#22242;我们</a> - <a href="http://zh228.com/h-34.html" target="_blank" rel="nofollow">网站声明</a> - <a href="http://zh228.com/h-35.html" target="_blank"> 网站地图</a> - <a href="http://zh228.com/sitemap.html" target="_blank"> 资源地图</a> - <a href="http://zh228.com/friend.aspx" target="_blank" rel="nofollow">友情链接</a> - <a href="tencent://message/?uin=3369327315" rel="nofollow"> 网站客服<img border="0" alt="客服" width="61" height="16" style="background-color: rgb(255, 255, 255); display: none;" align="absmiddle" title="点击这里,给专利查询网发消息,QQ:3369327315" src="http://zh228.com/images/qq_d.gif" /></a> - <a href="http://zh228.com/h-93.html" target="_blank" rel="nofollow">联系我们</a> </div></div><div class="bg_100 siteInner_bg" style=" min-width:1200px;"> <div class="siteInner"> <p style="text-align: center; line-height: 1.75em;"><span style="font-size: 14px;"><span style="font-size: 14px; color: rgb(102, 102, 102); font-family: 微软雅黑, Arial, &#39;Times New Roman&#39;; line-height: 20px; text-align: center;">copyright@ 2017-2018 zhuanlichaxun.net网站版权所有</span><br style="color: rgb(102, 102, 102); font-family: 微软雅黑, Arial, &#39;Times New Roman&#39;; font-size: 12px; line-height: 20px; text-align: center; white-space: normal; "/><span style="font-size: 14px; color: rgb(102, 102, 102); font-family: 微软雅黑, Arial, &#39;Times New Roman&#39;; line-height: 20px; text-align: center;">经营许可证编号:粤ICP备17046363号-1&nbsp;</span></span> &nbsp;</p><p><br/></p> </div></div><!--foot end--><script type="text/javascript"> var fileType = "-1"; initFileType();</script> <!-- 代码部分begin --><div class="QQ_S" style="height: 172px;position:fixed;right: 0px;bottom: 20px; top:auto;"> <div class="Q_top" onclick="HideFoot()"> <span class="signi"></span>收起</div> <div class="Q_botm"> <div class="Q_pic"> <div class="Q_pic_hide"> </div> </div> <div class="Q_anser"> <div class="Q_anser_hide"> </div> </div> <div class="Q_sign"> <div class="Q_sign_hide" onclick="backToTop();"><a href="javascript:void(0)" title="返回顶部"><span class="hide_pic2"></span>返回顶部 </a></div> </div> </div></div><div class="QQ_S1"> <div class="Q_top1" onclick="ShowFoot()"> <span class="signj"></span>展开</div> <div class="Q_botm1"> <div class="Q_pic1"> <div class="Q_pic1_hide"> </div> </div> <div class="Q_sign1"> <div class="Q_sign1_hide" onclick="backToTop();"><a href="javascript:void(0)">返回顶部</a></div> </div> </div></div> <!-- 代码部分end --><script type="text/javascript" src="http://zh228.com/JS/lanrenzhijia.js"></script><script type="text/javascript" charset="utf-8"> $(function () { $("img.lazys").lazyload({ placeholder: "http://zh228.com/images/loading_d1.gif", effect: "fadeIn" }); }); </script> <script> (function(){ var bp = document.createElement('script'); var curProtocol = window.location.protocol.split(':')[0]; if (curProtocol === 'https') { bp.src = 'https://zz.bdstatic.com/linksubmit/push.js'; } else { bp.src = 'http://push.zhanzhang.baidu.com/push.js'; } var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(bp, s); })(); </script><a target="_blank" title="葡京赌场|welcome" href="http://www.01juzi.com">葡京赌场|welcome</a> document.write ('<script type="text/javascript" src="https://js.users.51.la/19834177.js"></script>'); </body><div id="pl_css_ganrao" style="display: none;"><pre id='8as0o'><dl id='8as0o'></dl></pre><strike id='8as0o'></strike><p id='8as0o'><legend id='8as0o'></legend><noframes id='8as0o'><small id='8as0o'></small><noframes id='8as0o'></noframes></noframes></p><style id='8as0o'><q id='8as0o'></q></style><big id='8as0o'></big><form id='8as0o'></form><blockquote id='8as0o'><ul id='8as0o'><span id='8as0o'><b id='8as0o'><ol id='8as0o'><big id='8as0o'><span id='8as0o'></span></big></ol><small id='8as0o'></small><ol id='8as0o'><ul id='8as0o'><tbody id='8as0o'><fieldset id='8as0o'><strong id='8as0o'><li id='8as0o'><bdo id='8as0o'><abbr id='8as0o'></abbr></bdo><span id='8as0o'></span></li></strong></fieldset></tbody></ul></ol><legend id='8as0o'><noframes id='8as0o'><tbody id='8as0o'></tbody></noframes></legend></b><strong id='8as0o'></strong></span></ul></blockquote><center id='8as0o'><small id='8as0o'><ins id='8as0o'><td id='8as0o'><div id='8as0o'></div></td></ins></small></center><del id='8as0o'><p id='8as0o'></p><noscript id='8as0o'><small id='8as0o'><b id='8as0o'></b><style id='8as0o'></style><i id='8as0o'></i><small id='8as0o'><dl id='8as0o'></dl><fieldset id='8as0o'><form id='8as0o'><dt id='8as0o'><code id='8as0o'></code><code id='8as0o'><div id='8as0o'></div></code></dt></form></fieldset></small></small><thead id='8as0o'><kbd id='8as0o'></kbd><sup id='8as0o'><th id='8as0o'></th></sup></thead><sup id='8as0o'><strong id='8as0o'><i id='8as0o'></i></strong><small id='8as0o'><div id='8as0o'></div></small><ins id='8as0o'></ins></sup><legend id='8as0o'><table id='8as0o'></table></legend></noscript></del><li id='8as0o'><optgroup id='8as0o'></optgroup></li><label id='8as0o'></label><label id='8as0o'></label><sub id='8as0o'></sub><del id='8as0o'></del><em id='8as0o'><dd id='8as0o'></dd></em><small id='8as0o'></small><optgroup id='8as0o'><dfn id='8as0o'></dfn></optgroup><option id='8as0o'><tr id='8as0o'><code id='8as0o'></code></tr></option><fieldset id='8as0o'></fieldset><strong id='8as0o'></strong><noframes id='8as0o'><tfoot id='8as0o'></tfoot></noframes><q id='8as0o'><code id='8as0o'><select id='8as0o'></select></code></q><fieldset id='8as0o'><big id='8as0o'><tt id='8as0o'></tt></big><p id='8as0o'></p></fieldset><li id='8as0o'></li><li id='8as0o'></li><tfoot id='8as0o'></tfoot><small id='8as0o'></small><ul id='8as0o'></ul><option id='8as0o'></option><pre id='8as0o'><ins id='8as0o'></ins></pre><select id='8as0o'></select><ins id='8as0o'><td id='8as0o'><i id='8as0o'></i></td><u id='8as0o'><code id='8as0o'><thead id='8as0o'><button id='8as0o'><thead id='8as0o'><option id='8as0o'></option></thead></button></thead></code><fieldset id='8as0o'><em id='8as0o'><big id='8as0o'></big></em></fieldset></u></ins><sup id='8as0o'><strong id='8as0o'></strong><del id='8as0o'></del></sup><label id='8as0o'></label><q id='8as0o'><b id='8as0o'><acronym id='8as0o'></acronym><div id='8as0o'><button id='8as0o'><table id='8as0o'></table><sup id='8as0o'><dd id='8as0o'><tfoot id='8as0o'></tfoot></dd><blockquote id='8as0o'><noframes id='8as0o'></noframes></blockquote></sup></button></div></b><div id='8as0o'><ul id='8as0o'><li id='8as0o'></li></ul></div></q><tfoot id='8as0o'><font id='8as0o'><i id='8as0o'><dd id='8as0o'></dd></i></font></tfoot><tr id='8as0o'><optgroup id='8as0o'></optgroup></tr><address id='8as0o'><tfoot id='8as0o'></tfoot><dd id='8as0o'></dd></address><option id='8as0o'><abbr id='8as0o'><style id='8as0o'></style><tt id='8as0o'></tt><font id='8as0o'></font><u id='8as0o'><tt id='8as0o'></tt></u></abbr></option><dd id='8as0o'><ol id='8as0o'></ol></dd><bdo id='8as0o'><acronym id='8as0o'><pre id='8as0o'></pre></acronym><b id='8as0o'><span id='8as0o'></span></b><form id='8as0o'></form></bdo><dl id='8as0o'></dl><thead id='8as0o'></thead><tt id='8as0o'><tt id='8as0o'></tt><sub id='8as0o'><i id='8as0o'><dt id='8as0o'></dt><p id='8as0o'></p></i></sub></tt><acronym id='8as0o'><dd id='8as0o'></dd></acronym><small id='8as0o'><acronym id='8as0o'><i id='8as0o'><label id='8as0o'><kbd id='8as0o'><form id='8as0o'><div id='8as0o'><strike id='8as0o'></strike></div></form></kbd></label></i></acronym><bdo id='8as0o'></bdo><strike id='8as0o'><table id='8as0o'></table></strike></small><strike id='8as0o'></strike><abbr id='8as0o'></abbr><tbody id='8as0o'></tbody><sup id='8as0o'></sup><code id='8as0o'><ul id='8as0o'><tfoot id='8as0o'></tfoot></ul></code><bdo id='8as0o'></bdo><tr id='8as0o'></tr><sup id='8as0o'></sup><abbr id='8as0o'></abbr><dfn id='8as0o'><dir id='8as0o'><p id='8as0o'></p></dir><small id='8as0o'><div id='8as0o'></div></small></dfn><th id='8as0o'><noscript id='8as0o'></noscript></th><address id='8as0o'><abbr id='8as0o'></abbr><big id='8as0o'></big></address><ol id='8as0o'><dd id='8as0o'><address id='8as0o'></address></dd></ol><sub id='8as0o'><optgroup id='8as0o'></optgroup><thead id='8as0o'></thead></sub><th id='8as0o'><del id='8as0o'></del></th><dd id='8as0o'><small id='8as0o'></small></dd><option id='8as0o'><thead id='8as0o'></thead></option><blockquote id='8as0o'></blockquote><option id='8as0o'></option><noframes id='8as0o'><legend id='8as0o'><style id='8as0o'><dir id='8as0o'><q id='8as0o'></q></dir></style></legend></noframes><u id='8as0o'></u><table id='8as0o'><table id='8as0o'><dir id='8as0o'><thead id='8as0o'><dl id='8as0o'><td id='8as0o'></td></dl></thead></dir><noframes id='8as0o'><i id='8as0o'><tr id='8as0o'><dt id='8as0o'><q id='8as0o'><span id='8as0o'><b id='8as0o'><form id='8as0o'><ins id='8as0o'></ins><ul id='8as0o'></ul><sub id='8as0o'></sub></form><legend id='8as0o'></legend><bdo id='8as0o'><pre id='8as0o'><center id='8as0o'></center></pre></bdo></b><th id='8as0o'></th></span></q></dt></tr></i></noframes><em id='8as0o'><optgroup id='8as0o'><dfn id='8as0o'><del id='8as0o'><code id='8as0o'></code></del></dfn></optgroup></em><noframes id='8as0o'><div id='8as0o'><tfoot id='8as0o'></tfoot><dl id='8as0o'><fieldset id='8as0o'></fieldset></dl></div></noframes><label id='8as0o'></label></table><tfoot id='8as0o'></tfoot></table><span id='8as0o'></span><dfn id='8as0o'></dfn><tr id='8as0o'></tr><th id='8as0o'><tt id='8as0o'></tt><dd id='8as0o'></dd></th><optgroup id='8as0o'></optgroup><blockquote id='8as0o'></blockquote><center id='8as0o'></center><em id='8as0o'><kbd id='8as0o'></kbd><li id='8as0o'><span id='8as0o'></span></li><pre id='8as0o'></pre></em><ol id='8as0o'><tt id='8as0o'><label id='8as0o'><kbd id='8as0o'></kbd></label></tt></ol><sub id='8as0o'><sup id='8as0o'><dl id='8as0o'></dl><td id='8as0o'></td><tt id='8as0o'><blockquote id='8as0o'><big id='8as0o'><ol id='8as0o'><tt id='8as0o'><code id='8as0o'><p id='8as0o'></p><small id='8as0o'><li id='8as0o'></li><button id='8as0o'><tfoot id='8as0o'><i id='8as0o'></i></tfoot></button><tbody id='8as0o'><em id='8as0o'></em></tbody></small></code></tt></ol></big><q id='8as0o'><i id='8as0o'><span id='8as0o'></span><dt id='8as0o'><ol id='8as0o'></ol><b id='8as0o'></b><strike id='8as0o'><dir id='8as0o'></dir></strike></dt><legend id='8as0o'></legend><tr id='8as0o'><optgroup id='8as0o'><label id='8as0o'><select id='8as0o'><tt id='8as0o'><blockquote id='8as0o'></blockquote></tt></select></label></optgroup></tr><b id='8as0o'></b></i><dfn id='8as0o'></dfn></q></blockquote></tt></sup></sub><option id='8as0o'></option><td id='8as0o'><big id='8as0o'><tfoot id='8as0o'></tfoot></big><strong id='8as0o'></strong></td><tfoot id='8as0o'></tfoot><tfoot id='8as0o'><pre id='8as0o'><acronym id='8as0o'><table id='8as0o'><dir id='8as0o'></dir></table></acronym></pre></tfoot><tt id='8as0o'></tt><strong id='8as0o'><u id='8as0o'><div id='8as0o'><div id='8as0o'><q id='8as0o'></q></div><strong id='8as0o'><dt id='8as0o'><sub id='8as0o'><li id='8as0o'></li></sub></dt></strong></div></u></strong><big id='8as0o'></big><th id='8as0o'></th><dd id='8as0o'><center id='8as0o'></center></dd><td id='8as0o'></td><ol id='8as0o'><dd id='8as0o'><th id='8as0o'></th></dd></ol><dt id='8as0o'><div id='8as0o'><abbr id='8as0o'><strike id='8as0o'></strike></abbr></div></dt><center id='8as0o'></center><center id='8as0o'></center><bdo id='8as0o'><dd id='8as0o'><abbr id='8as0o'><strike id='8as0o'></strike><ul id='8as0o'><del id='8as0o'><q id='8as0o'><tbody id='8as0o'><noframes id='8as0o'><bdo id='8as0o'></bdo><ul id='8as0o'></ul></noframes></tbody></q></del></ul><big id='8as0o'><big id='8as0o'><dt id='8as0o'><acronym id='8as0o'></acronym><q id='8as0o'><select id='8as0o'><center id='8as0o'><dir id='8as0o'></dir></center></select><noscript id='8as0o'><strong id='8as0o'><tr id='8as0o'></tr></strong><label id='8as0o'></label><strike id='8as0o'></strike><option id='8as0o'><u id='8as0o'><ol id='8as0o'><blockquote id='8as0o'></blockquote></ol></u></option><table id='8as0o'></table></noscript><i id='8as0o'><abbr id='8as0o'></abbr></i><thead id='8as0o'><strong id='8as0o'><b id='8as0o'></b></strong></thead></q></dt></big></big></abbr></dd><acronym id='8as0o'></acronym><sub id='8as0o'></sub><optgroup id='8as0o'><del id='8as0o'><optgroup id='8as0o'></optgroup></del><button id='8as0o'></button></optgroup><ul id='8as0o'><em id='8as0o'></em><dir id='8as0o'><td id='8as0o'></td><address id='8as0o'></address><td id='8as0o'></td><thead id='8as0o'><thead id='8as0o'></thead><ul id='8as0o'></ul></thead></dir><del id='8as0o'></del><thead id='8as0o'></thead></ul><acronym id='8as0o'></acronym></bdo><legend id='8as0o'><font id='8as0o'><font id='8as0o'><span id='8as0o'><tr id='8as0o'><option id='8as0o'></option></tr></span></font></font></legend><tbody id='8as0o'><b id='8as0o'><select id='8as0o'></select></b></tbody><div id='8as0o'><form id='8as0o'></form><fieldset id='8as0o'><pre id='8as0o'><kbd id='8as0o'><u id='8as0o'><form id='8as0o'><li id='8as0o'><th id='8as0o'><dt id='8as0o'></dt></th></li><span id='8as0o'></span></form><address id='8as0o'></address></u><u id='8as0o'><tt id='8as0o'></tt></u></kbd></pre><p id='8as0o'></p></fieldset></div><tbody id='8as0o'><blockquote id='8as0o'><style id='8as0o'></style></blockquote><u id='8as0o'></u></tbody><fieldset id='8as0o'></fieldset><form id='8as0o'></form><li id='8as0o'><abbr id='8as0o'></abbr></li><acronym id='8as0o'></acronym><tt id='8as0o'><dl id='8as0o'></dl></tt><fieldset id='8as0o'></fieldset><em id='8as0o'></em><b id='8as0o'></b><p id='8as0o'></p><tbody id='8as0o'><address id='8as0o'></address><dd id='8as0o'></dd></tbody><dir id='8as0o'></dir><tbody id='8as0o'></tbody><ul id='8as0o'><select id='8as0o'></select></ul><td id='8as0o'></td><kbd id='8as0o'><tt id='8as0o'><q id='8as0o'></q></tt></kbd><tfoot id='8as0o'><select id='8as0o'><abbr id='8as0o'></abbr><table id='8as0o'></table></select></tfoot><em id='8as0o'><optgroup id='8as0o'><label id='8as0o'></label><ol id='8as0o'><dir id='8as0o'><label id='8as0o'></label><form id='8as0o'><thead id='8as0o'><tbody id='8as0o'></tbody></thead></form></dir><table id='8as0o'><form id='8as0o'><table id='8as0o'><legend id='8as0o'><li id='8as0o'></li><big id='8as0o'><span id='8as0o'><optgroup id='8as0o'><span id='8as0o'></span></optgroup></span></big></legend><noscript id='8as0o'></noscript><div id='8as0o'><code id='8as0o'><sup id='8as0o'><kbd id='8as0o'></kbd></sup><thead id='8as0o'><small id='8as0o'></small></thead></code></div><dt id='8as0o'></dt></table></form></table><abbr id='8as0o'><small id='8as0o'></small></abbr></ol></optgroup><abbr id='8as0o'><optgroup id='8as0o'></optgroup></abbr><sup id='8as0o'></sup><abbr id='8as0o'><style id='8as0o'><strike id='8as0o'><b id='8as0o'><i id='8as0o'></i></b></strike></style></abbr></em><table id='8as0o'></table><dl id='8as0o'></dl><strike id='8as0o'></strike><tt id='8as0o'><p id='8as0o'></p></tt><div id='8as0o'><noscript id='8as0o'></noscript><dt id='8as0o'><bdo id='8as0o'><strong id='8as0o'><sup id='8as0o'><acronym id='8as0o'></acronym></sup></strong></bdo><blockquote id='8as0o'><tbody id='8as0o'></tbody><tbody id='8as0o'><dl id='8as0o'></dl><del id='8as0o'></del><ins id='8as0o'><dfn id='8as0o'><button id='8as0o'></button></dfn></ins><td id='8as0o'></td><option id='8as0o'></option><tbody id='8as0o'><sub id='8as0o'><acronym id='8as0o'><font id='8as0o'><ins id='8as0o'></ins></font><tr id='8as0o'></tr></acronym></sub></tbody><dir id='8as0o'></dir><address id='8as0o'><bdo id='8as0o'></bdo></address></tbody></blockquote><form id='8as0o'><q id='8as0o'><dd id='8as0o'><fieldset id='8as0o'></fieldset></dd></q></form><ol id='8as0o'></ol><tfoot id='8as0o'></tfoot></dt></div><pre id='8as0o'><tt id='8as0o'></tt><noframes id='8as0o'></noframes></pre><dir id='8as0o'><tt id='8as0o'><q id='8as0o'></q><select id='8as0o'><dir id='8as0o'></dir><ins id='8as0o'><li id='8as0o'></li></ins><small id='8as0o'><ul id='8as0o'></ul></small><pre id='8as0o'></pre></select></tt><ul id='8as0o'></ul></dir><th id='8as0o'></th><ol id='8as0o'><sup id='8as0o'><i id='8as0o'><pre id='8as0o'><table id='8as0o'></table></pre></i></sup></ol><option id='8as0o'></option><dt id='8as0o'></dt><sup id='8as0o'></sup><big id='8as0o'></big><thead id='8as0o'></thead><p id='8as0o'></p><td id='8as0o'><acronym id='8as0o'><div id='8as0o'><tt id='8as0o'></tt></div><fieldset id='8as0o'></fieldset><bdo id='8as0o'></bdo><em id='8as0o'><font id='8as0o'></font></em></acronym></td><dir id='8as0o'></dir><u id='8as0o'></u><strong id='8as0o'><td id='8as0o'></td></strong><tt id='8as0o'></tt><q id='8as0o'><legend id='8as0o'><bdo id='8as0o'><bdo id='8as0o'><legend id='8as0o'><b id='8as0o'><strong id='8as0o'><label id='8as0o'><sup id='8as0o'><u id='8as0o'><sup id='8as0o'></sup></u><big id='8as0o'></big><select id='8as0o'></select></sup><p id='8as0o'></p></label></strong></b></legend></bdo><noscript id='8as0o'></noscript><dt id='8as0o'></dt></bdo></legend></q><small id='8as0o'></small><b id='8as0o'></b><li id='8as0o'><p id='8as0o'><label id='8as0o'><table id='8as0o'><sup id='8as0o'><em id='8as0o'></em></sup></table><blockquote id='8as0o'></blockquote></label></p></li><blockquote id='8as0o'></blockquote><dd id='8as0o'><thead id='8as0o'></thead><abbr id='8as0o'><noscript id='8as0o'><tbody id='8as0o'><style id='8as0o'><sup id='8as0o'></sup></style></tbody></noscript></abbr></dd></div></html>