太阳城集团

  • / 9
  • 下载费用:30 金币  

一种基于副本交换和局部增强策略的群体构象空间搜索方法.pdf

摘要
申请专利号:

太阳城集团CN201510310103.2

申请日:

2015.06.08

公开号:

CN105046101A

公开日:

2015.11.11

当前法律状态:

授权

有效性:

有权

法律详情: 授权|||实质审查的生效IPC(主分类):G06F 19/16申请日:20150608|||公开
IPC分类号: G06F19/16(2011.01)I 主分类号: G06F19/16
申请人: 浙江工业大学
发明人: 张贵军; 郝小虎; 俞旭锋; 周晓根; 陈凯; 徐东伟
地址: 310014浙江省杭州市下城区朝晖六区潮王路18号浙江工业大学
优先权:
专利代理机构: 杭州斯可睿专利事务所有限公司33241 代理人: 王利强
PDF完整版下载: PDF下载
法律状态
申请(专利)号:

太阳城集团CN201510310103.2

授权太阳城集团号:

||||||

法律状态太阳城集团日:

2018.06.01|||2015.12.09|||2015.11.11

法律状态类型:

太阳城集团授权|||实质审查的生效|||公开

摘要

一种基于副本交换和局部增强策略的群体构象空间搜索方法,在差分进化算法框架下,采用Rosetta Score3粗粒度知识能量模型来有效降低构象空间搜索维数、提高算法的收敛速度;引入基于知识的片段组装技术可以有效提高预测精度;利用Monte Carlo算法良好的局部搜索性能对种群做局部增强,以得到更为优良的局部构象,结合差分进化算法较强的全局搜索能力,可以对构象空间进行更为有效的采样,副本交换策略的引入使得群体的多样性以及空间采样能力得到进一步增强。

权利要求书

1.一种基于副本交换和局部增强策略的群体构象空间搜索方法,其特征在于:所
述构象空间搜索方法包括以下步骤:
1)给定输入序列太阳城集团;
2)设置系统参数:种群大小popSize,算法的迭代次数T,交叉因子CR,片段的
长度L,副本层数RE,副本层温度参数kT;
3)种群初始化:在每个副本层,由输入序列产生popSize个种群个体Pinit;
4)开始迭代,在每个副本层执行种群更新过程,对初始种群中的每个个体:
4.1)设i=1,其中i∈{1,2,3,…,popSize};令Ptarget=Pi,其中i为序号,Ptarget
表示目标个体;
4.2)随机生成正整数rand1,rand2,rand3,其中rand1∈{1,2,3,......popSize},
rand1≠i,rand2≠rand3∈{1,2,…,Length},Length为序列长度;
4.3)针对个体Pj做变异操作,其中:j=rand1,令a=min(rand2,rand3),b=
max(rand2,rand3),k∈[a,b];
4.4)对蛋白质链中第a到b个氨基酸做如下操作:
a:令Ptarget.phi(k)=Pj.phi(k);
b:令Ptarget.psi(k)=Pj.psi(k);
c:令Ptarget.omega(k)=Pj.omega(k);
步骤a,b,c分别为:将Ptargett的氨基酸k所对应的二面角phi、psi、
omega替换为Pj的相同位置所对应的二面角phi、psi、omega;
4.5)通过变异得到测试个体Ptrial;
4.6)生成随机数rand4,rand5,其中rand4∈(0,1),rand5∈(1,Length);
4.7)根据 P trai 1 = P trai 1 , rand 5 = P t arg et , rand 5 if ( rand 4 CR ) P trai 1 , rand 5 otherwise ]]>执行交叉过程:若随机
数rand4<=CR,个体Ptrial的片段rand5替换为个体Ptargett中对应的片
段,否则直接继承个体Ptrial。
4.8)根据RosettaScore3计算Ptarget和Ptrial的能量:E(Ptarget)和E(Ptrial);
4.9)若E(Ptarget)>E(Ptrial)则用Ptrial替换Ptarget,否则保持种群不变;
5)得到更新种群Pupdate;
6)对更新种群中的每个个体Pi:
6.1)调用MonteCarlo方法对个体做局部增强;
6.2)计算增强过程中产生的构象的能量E(MC);
6.3)若E(Pi)>E(MC),则更新种群,否则保持种群不变;
7)得到局部增强后的种群Penhance;
8)当所有副本层的种群都完成一次更新,进行副本交换操作:
8.1)在相邻的两个副本层中各随机选择一个个体Pexchange_A、Pexchange_B,用于
副本交换;
8.2)根据RosettaScore3计算两个个体Pexchange_A、Pexchange_B的能量E(Pexchange_A)、
E(Pexchange_B);
8.3)根据判决公式 Judge = e ( ( 1 ( kT ) B - 1 ( kT ) A ) × E ( P exchange _ B ) - E ( P exchange _ A ) ) ]]>判断是否进行副本交
换,其中(kT)A、(kT)B分别是个体Pexchange_A、Pexchange_B对应副本层的能
量参数,Judge为判决数;
8.4)根据判决结果,以一定的概率进行副本交换操作:交换这两个个体;
9)迭代的运行步骤4)~8),至满足终止条件。

说明书

一种基于副本交换和局部增强策略的群体构象空间搜索方法

技术领域

本发明涉及生物太阳城集团学、计算机应用领域,尤其涉及的是一种基于副本交换和局部增强策略的群体构象空间搜索方法。

背景技术

太阳城集团蛋白质分子在生物细胞化学反应过程中起着至关重要的作用。它们的结构模型和生物活性状态对我们理解和治愈多种疾病有重要的意义。蛋白质只有折叠成特定的三维结构才能产生其特有的生物学功能。因此,要了解蛋白质的功能,就必须获得其三维空间结构。

蛋白质三级结构预测是生物太阳城集团学的一个重要任务。蛋白质构象优化问题现在面临最大的挑战是对极其复杂的蛋白质能量函数曲面进行搜索。蛋白质能量模型考虑了分子体系成键作用以及范德华力、静电、氢键、疏水等非成键作用,致使其形成的能量曲面极其粗糙,构象对应局部极小解数目随序列长度的增加呈指数增长。而蛋白质构象预测算法能够找到蛋白质稳定结构的机理是,大量的蛋白质亚稳定结构构成了低能量区域,所以能否找到蛋白质全局最稳定结构的关键是算法能够找到大量的蛋白质亚稳定结构,即增加算法的种群多样性。因此,针对更加精确的蛋白质力场模型,选取有效的构象空间优化算法,使新的蛋白质结构预测算法更具有普遍性和高效性成为生物太阳城集团学中蛋白质结构预测的焦点问题。

目前,蛋白质结构预测方法大致可以分为两类,基于模板的方法和不基于模板的方法。其中,不基于模板的从头预测(Ab-inito)方法应用最为广泛。它适用于同源性小于25%的大多数蛋白质,仅从序列产生全新结构,对蛋白质分子设计及蛋白质折叠的研究等具有重要意义。当前有以下几种比较成功的从头预测方法:张阳与JeffreySkolnick合作的TASSER(Threading/Assembly/Refinement)方法、DavidBaker及团队设计的Rosetta方法、Shehu等设计的FeLTr方法等。但是到目前还没有一种十分完善的方法来预测蛋白质的三维结构,即使获得了很好的预测结果,但也只是针对某些蛋白质而言的,目前主要的技术瓶颈在于两个方面,第一方面在于采样方法,现有技术对构象空间采样能力不强,另一方面在于构象更新方法,现有技术对构象的更新精度仍然不足。

太阳城集团因此,现有的构象空间搜索方法存在不足,需要改进。

发明内容

为了克服现有的蛋白质结构预测方法的构象空间搜索维数较高、收敛速度较慢、预测精度较低的不足,本发明基于差分进化群体算法,提出一种基于副本交换和局部增强策略的群体构象空间搜索方法,RELEDE:在差分进化算法框架下,采用RosettaScore3粗粒度知识能量模型来有效降低构象空间搜索维数、提高算法的收敛速度;引入基于知识的片段组装技术可以有效提高预测精度;利用MonteCarlo算法良好的局部搜索性能对种群做局部增强,以得到更为优良的局部构象,结合差分进化算法较强的全局搜索能力,可以对构象空间进行更为有效的采样,副本交换策略的引入使得群体的多样性以及空间采样能力得到进一步增强。

太阳城集团本发明解决其技术问题所采用的技术方案是:

太阳城集团一种基于副本交换和局部增强策略的群体构象空间搜索方法,所述搜索方法包括以下步骤:

太阳城集团1)给定输入序列太阳城集团;

太阳城集团2)设置系统参数:种群大小popSize,算法的迭代次数T,交叉因子CR,片段的长度L,副本层数RE,副本层温度参数kT;

3)种群初始化:在每个副本层,由输入序列产生popSize个种群个体Pinit;

4)开始迭代,在每个副本层执行种群更新过程,对初始种群中的每个个体:

4.1)设i=1,其中i∈{1,2,3,…,popSize};令Ptarget=Pi,其中i为序号,Ptarget表示目标个体;

4.2)随机生成正整数rand1,rand2,rand3,其中rand1∈{1,2,3,......popSize},rand1≠i,rand2≠rand3∈{1,2,…,Length},Length为序列长度;

4.3)针对个体Pj做变异操作,其中:j=rand1,令a=min(rand2,rand3),b=max(rand2,rand3),k∈[a,b];

太阳城集团4.4)对蛋白质链中第a到b个氨基酸做如下操作:

a:令Ptarget.phi(k)=Pj.phi(k);

b:令Ptarget.psi(k)=Pj.psi(k);

c:令Ptarget.omega(k)=Pj.omega(k);

步骤a,b,c分别为:将Ptarget的氨基酸k所对应的二面角phi、psi、omega替换为Pj的相同位置所对应的二面角phi、psi、omega;

4.5)通过变异得到测试个体Ptrial;

4.6)生成随机数rand4,rand5,其中rand4∈(0,1),rand5∈(1,Length);

4.7)根据 P t r a i l = P t r a i l , r a n d 5 = P t arg e t , r a n d 5 i f ( r a n d 4 C R ) P t r a i l , r a n d 5 o t h e r w i s e ]]>执行交叉过程:若随机数rand4<=CR,个体Ptrial的片段rand5替换为个体Ptarget中对应的片段,否则直接继承个体Ptrial。

太阳城集团4.8)根据RosettaScore3计算Ptarget和Ptrial的能量:E(Ptarget)和E(Ptrial);

4.9)若E(Ptarget)>E(Ptrial)则用Ptrial替换Ptarget,否则保持种群不变;

5)得到更新种群Pupdate;

6)对更新种群中的每个个体Pi:

6.1)调用MonteCarlo方法对个体做局部增强;

6.2)计算增强过程中产生的构象的能量E(MC);

6.3)若E(Pi)>E(MC),则更新种群,否则保持种群不变;

太阳城集团7)得到局部增强后的种群Penhance;

8)当所有副本层的种群都完成一次更新,进行副本交换操作:

8.1)在相邻的两个副本层中各随机选择一个个体Pexchange_A、Pexchange_B,用于副本交换;

太阳城集团8.2)根据RosettaScore3计算两个个体Pexchange_A、Pexchange_B的能量E(Pexchange_A)、E(Pexchange_B);

8.3)根据判决公式 J u d g e = e ( ( 1 ( k T ) B - 1 ( k T ) A ) × ( E ( P e x c h a n g e _ B ) - E ( P e x c h a n g e _ A ) ) ) ]]>判断是否进行副本交换,其中(kT)A、(kT)B分别是个体Pexchange_A、Pexchange_B对应副本层的能量参数,Judge为判决数;

太阳城集团8.4)根据判决结果,以一定的概率进行副本交换操作:交换这两个个体;

9)迭代的运行步骤4)~8),至满足终止条件。

太阳城集团本发明的有益效果为:在差分进化算法框架下,采用RosettaScore3粗粒度知识能量模型有效降低构象空间搜索维数、提高算法收敛速度;引入基于知识的片段组装技术可以有效提高预测精度;利用MonteCarlo算法良好的局部搜索性能对种群做局部增强,以得到更为优良的局部构象;结合差分进化算法较强的全局搜索能力,可以对构象空间进行更为有效的采样,副本交换策略的引入使得群体的多样性以及空间采样能力得到进一步增强,从而在构象空间中搜索得到较高精度的近天然态构象。

附图说明

太阳城集团图1是蛋白质1ENH构象系综中构象更新示意图。

具体实施方式

下面结合附图对本发明作进一步描述。

参照图1,一种基于副本交换和局部增强策略的群体构象空间搜索方法,包括以下步骤:

1)给定输入序列太阳城集团;

太阳城集团2)设置系统参数:种群大小popSize,算法的迭代次数T,交叉因子CR,片段的长度L,副本层数RE,副本层温度参数kT;

3)种群初始化:在每个副本层,由输入序列产生popSize个种群个体Pinit;

4)开始迭代,在每个副本层执行种群更新过程,对初始种群中的每个个体:

4.1)设i=1,其中i∈{1,2,3,…,popSize};令Ptarget=Pi,其中i为序号,Ptarget表示目标个体;

太阳城集团4.2)随机生成正整数rand1,rand2,rand3,其中rand1∈{1,2,3,......popSize},rand1≠i,rand2≠rand3∈{1,2,…,Length},Length为序列长度;

4.3)针对个体Pj做变异操作,其中:j=rand1;令a=min(rand2,rand3),b=max(rand2,rand3),k∈[a,b];

4.4)对蛋白质链中第a到b个氨基酸做如下操作:

太阳城集团a:令Ptarget.phi(k)=Pj.phi(k);

b:令Ptarget.psi(k)=Pj.psi(k);

c:令Ptarget.omega(k)=Pj.omega(k);

步骤a,b,c分别为:将Ptarget的氨基酸k所对应的二面角phi、psi、omega替换为Pj的相同位置所对应的二面角phi、psi、omega;

4.5)通过变异得到测试个体Ptrial;

太阳城集团4.6)生成随机数rand4,rand5,其中rand4∈(0,1),rand5∈(1,Length);

4.7)根据 P t r a i l = P t r a i l , r a n d 5 = P t arg e t , r a n d 5 i f ( r a n d 4 C R ) P t r a i l , r a n d 5 o t h e r w i s e ]]>太阳城集团执行交叉过程:若随机数rand4<=CR,个体Ptrial的片段rand5替换为个体Ptarget中对应的片段,否则直接继承个体Ptrial。

4.8)根据RosettaScore3计算Ptarget和Ptrial的能量:E(Ptarget)和E(Ptrial);

4.9)若E(Ptarget)>E(Ptrial)则用Ptrial替换Ptarget,否则保持种群不变;

5)得到更新种群Pupdate;

6)对更新种群中的每个个体Pi:

6.1)调用MonteCarlo方法对个体做局部增强;

太阳城集团6.2)计算增强过程中产生的构象的能量E(MC);

6.3)若E(Pi)>E(MC),则更新种群,否则保持种群不变;

7)得到局部增强后的种群Penhance;

8)当所有副本层的种群都完成一次更新,进行副本交换操作:

8.1)在相邻的两个副本层中各随机选择一个个体Pexchange_A、Pexchange_B,用于副本交换;

8.2)根据RosettaScore3计算两个个体Pexchange_A、Pexchange_B的能量E(Pexchange_A)、E(Pexchange_B);

8.3)根据判决公式 J u d g e = e ( ( 1 ( k T ) B - 1 ( k T ) A ) × ( E ( P e x c h a n g e _ B ) - E ( P e x c h a n g e _ A ) ) ) ]]>太阳城集团判断是否进行副本交换,其中(kT)A、(kT)B分别是个体Pexchange_A、Pexchange_B对应副本层的能量参数,Judge为判决数;

太阳城集团8.4)根据判决结果,以一定的概率进行副本交换操作:交换这两个个体;

9)迭代的运行步骤4)~8),至终止条件。

太阳城集团本实施例以序列长度为54的蛋白质1ENH为实施例,一种基于副本交换和局部增强策略的群体构象空间搜索方法,其中包含以下步骤:

1)给定输入序列太阳城集团1ENH;

2)设置系统参数:种群大小popSize=30,算法的迭代次数T=10000,交叉因子CR=0.5,片段的长度L=3,副本层数RE=8,副本层温度参数kT=[0.67,0.72,0.95,1.14,1.36,1.63,1.95,2.33];

3)种群初始化:在每个副本层,由输入序列产生30个种群个体Pinit;

4)开始迭代,在每个副本层执行种群更新过程,对初始种群中的每个个体:

太阳城集团4.1)设i=1,其中i∈{1,2,3,…,30};令Ptarget=Pi,其中i为序号,Ptarget表示目标个体;

4.2)随机生成正整数rand1,rand2,rand3,其中rand1∈{1,2,3,...,30},rand1≠i,rand2≠rand3,∈{1,2,…,54};

4.3)针对个体Pj做变异操作,其中:j=rand1;令a=min(rand2,rand3),b=max(rand2,rand3),k∈[a,b];

4.4)对蛋白质链中第a到b个氨基酸做如下操作:

a:令Ptarget.phi(k)=Pj.phi(k);

b:令Ptarget.psi(k)=Pj.psi(k);

太阳城集团c:令Ptarget.omega(k)=Pj.omega(k);

太阳城集团步骤a,b,c分别为:将Ptarget的氨基酸k所对应的二面角phi、psi、omega替换为Pj的相同位置所对应的二面角phi、psi、omega;

4.5)通过变异得到测试个体Ptrial;

4.6)生成随机数rand4,rand5,其中rand4∈(0,1),rand5∈(1,54);

4.7)根据 P t r a i l = P t r a i l , r a n d 5 = P t arg e t , r a n d 5 i f ( r a n d 4 0.5 ) P t r a i l , r a n d 5 o t h e r w i s e ]]>执行交叉过程:若随机数rand4<=0.5,个体Ptrial的片段rand5替换为个体Ptarget中对应的片段,否则直接继承个体Ptrial。

太阳城集团4.8)根据RosettaScore3计算Ptarget和Ptrial的能量:E(Ptarget)和E(Ptrial);

太阳城集团4.9)若E(Ptarget)>E(Ptrial)则用Ptrial替换Ptarget,否则保持种群不变;

太阳城集团5)得到更新种群Pupdate;

6)对更新种群中的每个个体Pi:

6.1)调用MonteCarlo方法对个体做局部增强;

太阳城集团6.2)计算增强过程中产生的构象的能量E(MC);

太阳城集团6.3)若E(Pi)>E(MC),则更新种群,否则保持种群不变;

7)得到局部增强后的种群Penhance;

太阳城集团8)当所有副本层的种群都完成一次更新,进行副本交换操作:

8.1)在相邻的两个副本层中各随机选择一个个体Pexchange_A、Pexchange_B,用于副本交换;

太阳城集团8.2)根据RosettaScore3计算两个个体Pexchange_A、Pexchange_B的能量E(Pexchange_A)、E(Pexchange_B);

8.3)根据判决公式 J u d g e = e ( ( 1 ( k T ) B - 1 ( k T ) A ) × ( E ( P e x c h a n g e _ B ) - E ( P e x c h a n g e _ A ) ) ) ]]>太阳城集团判断是否进行副本交换,其中(kT)A、(kT)B分别是个体Pexchange_A、Pexchange_B对应副本层的能量参数,Judge为判决数;

8.4)根据判决结果,以一定的概率进行副本交换操作:交换这两个个体;

9)迭代的运行步骤4)~8),至终止条件。

以序列长度为54的蛋白质1ENH为实施例,运用以上方法得到了该蛋白质的近天然态构象,构象系综中构象更新图如图1所示。

以上阐述的是本发明给出的一个实施例表现出来的优良效果,显然本发明不仅适合上述实施例,在不偏离本发明基本精神及不超出本发明实质内容所涉及内容的前提下可对其做种种变化加以实施。

关 键 词:
一种 基于 副本 交换 局部 增强 策略 群体 构象 空间 搜索 方法
  专利查询网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
太阳城集团本文
本文标题:一种基于副本交换和局部增强策略的群体构象空间搜索方法.pdf
链接地址:http://zh228.com/p-6401487.html
太阳城集团我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服客服 - 联系我们

copyright@ 2017-2018 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备17046363号-1 
 


收起
展开
葡京赌场|welcome document.write ('');