太阳城集团

  • / 16
  • 下载费用:30 金币  

一种基于浮动车数据的城市道路交通事故影响预测方法.pdf

摘要
申请专利号:

太阳城集团CN201310616362.9

申请日:

2013.11.27

公开号:

CN103632546A

公开日:

2014.03.12

当前法律状态:

授权

有效性:

有权

法律详情: 授权|||实质审查的生效IPC(主分类):G08G 1/01申请日:20131127|||公开
IPC分类号: G08G1/01 主分类号: G08G1/01
申请人: 中国航天系统工程有限公司
发明人: 陈远迁; 雷利军; 王振华; 万蔚; 荆长林; 景泽涛; 单雅文; 翟羽佳; 张丹
地址: 100070 北京市丰台区南四环西路188号总部基地17区5号楼
优先权:
专利代理机构: 北京法思腾知识产权代理有限公司 11318 代理人: 杨小蓉;杨青
PDF完整版下载: PDF下载
法律状态
申请(专利)号:

太阳城集团CN201310616362.9

授权太阳城集团号:

||||||

法律状态太阳城集团日:

2016.01.20|||2014.04.09|||2014.03.12

法律状态类型:

太阳城集团授权|||实质审查的生效|||公开

摘要

本发明提供一种基于浮动车数据的城市道路交通事故影响预测方法,所述方法包含:步骤101)查询相关路段浮动车历史数据,并对浮动车历史数据进行预处理,得到相应路段的正常状态下的车辆平均速度和车流密度;步骤102)查询相关路段浮动车实时数据,并对浮动车实时数据进行预处理,得出相应路段目前的车辆平均速度;步骤103)查询城市道路交通事故路段的路网数据,并通过处理得到周边路段的拓扑结构和相应路段满载时的车流密度;步骤104)根据预处理后的浮动车历史数据、浮动车实时数据和路网拓扑关系数据,对事故及事故周边路段的影响进行预测分析。本发明以浮动车数据作为预测的数据输入,从而在预测数据依据上保证了本发明预测结果的准确性。

权利要求书

权利要求书
1.  一种基于浮动车数据的城市道路交通事故影响预测方法,所述方法包含:
步骤101)查询相关路段浮动车历史数据,并对浮动车历史数据进行预处理,得到相应路段的正常状态下的车辆平均速度和车流密度;
步骤102)查询相关路段浮动车实时数据,并对浮动车实时数据进行预处理,得出相应路段目前的车辆平均速度;
步骤103)查询城市道路交通事故路段的路网数据,并通过处理得到周边路段的拓扑结构和相应路段满载时的车流密度;
其中,路段满载时车流密度的计算公式如下:
Km=NmL=L×nroadlcar+ls/L=nroadlcar+ls;]]>
步骤104)根据预处理后的浮动车历史数据、浮动车实时数据和路网拓扑关系数据,对事故及事故周边路段的影响进行预测分析;
其中,L为路段长度,nraod为路段车道数,lcar为汽车平均长度,ls为汽车间的平均间隔距离。

2.  根据权利要求1所述的基于浮动车数据的城市道路交通事故影响预测方法,其特征在于,所述步骤101)采用如下公式得到正常状态下的车辆平均速度和车流密度:
K=NL=Nf/αL]]>
v=(v1+v2+…+vn)/n
其中,N为某一时刻某路段上的车辆数,L为路段的长度,Nf为该路段上的浮动车数,α为浮动车在该段路段所占车辆总数的比例,v1,v2……vn为该路段上浮动车的速度。

3.  根据权利要求1所述的基于浮动车数据的城市道路交通事故影响预测方法,其特征在于,所述步骤104)进一步包含:
步骤104-1)获取单一路段由正常状态转化为事故影响状态,并由事故影响状态转化为正常状态的演化太阳城集团和演化的路段长度;
步骤104-2)通过路网拓扑关系,对城市道路交通事故周边上游路网由近及远进行分段并分别编号为{A1,A2,…Ap},并依据得到的演化太阳城集团和演化的路段长度, 对事故未处理完成前和事故处理完成后的一定太阳城集团段内的交通状况进行预测。

4.  根据权利要求3所述的基于浮动车数据的城市道路交通事故影响预测方法,其特征在于,所述步骤104-1)进一步包含:
步骤104-1-1)道路某一路段由正常状态转变为事故影响状态的演变太阳城集团Ty计算公式如下:
Ty=L*Km-L*KV*K-Vs*Km---(4)]]>
步骤104-1-2)基于演变太阳城集团得到演变路段的长度,太阳城集团T内演变的路段长度为:
Ly=T*(V*K-Vs*Km)Km-K---(5)]]>
步骤104-1-3)获得由事故影响状态转变为正常状态的演变太阳城集团Tr,计算公式如下:
Tr=L*Km-L*K(V-Vs)*Km---(6)]]>
步骤104-1-4)基于演变太阳城集团得到演变路段的长度,太阳城集团T内演变的路段长度为:
Lr=T*Km*(V-Vs)Km-K---(7)]]>
其中,Km为该路段满载时车流密度,L为路段长度,K为该路段正常车流密度,V为正常平均速度,Vs为事故后路段平均速度。

5.  根据权利要求4所述的基于浮动车数据的城市道路交通事故影响预测方法,其特征在于,所述步骤104-2)进一步包含:
当给定事故发生后太阳城集团Ta1时段内的事故影响范围计算过程如下,其中,Ta1<Ta;
步骤104-2-11)通过路网拓扑关系,对城市道路交通事故周边上游路网由近及远进行分段并分别编号为{A1,A2,…Ap};
步骤104-2-12),由事故路段开始由近及远,通过公式(4)求解各路段的状态转换太阳城集团Tyn;
步骤104-2-13),将各路段的转换太阳城集团Tyn进行累加,计算各上游分路段的事故影响状态的总太阳城集团Tyc=Ty1+Ty2+…+Tyn;
步骤104-2-14),重复上步骤,直到Tyc>Ta1,令T=Ta1-(Tyc-Tyn),利用公式(5),求解出处于事故影响状态的最外围路段中受影响的长度Lnys,则处于事故影响状态路段的总长度Ly=L1+L2+…+L(n-1)+Lnys,处于事故影响状态的路段集合为{A1,A2,…,An};
当事故处理完成后给定事故发生后太阳城集团Ta2时的事故影响范围计算过程如下,其中,Ta2>Ta:
步骤104-2-21)通过路网拓扑关系,对城市道路交通事故周边上游路网由近及远进行分段并分别编号为{A1,A2,…Ap};
步骤104-2-22)由事故路段开始由近及远,通过公式(6)求解各路段的状态转化太阳城集团Trm;
步骤104-2-23),将状态转换太阳城集团进行累加,计算出各上游分路段的事故影响状态恢复正常状态的总太阳城集团Trc=Tr1+Tr2+…+Trm;
步骤104-2-24),重复上步骤,直到Trc>Ta2,令T=Ta2-(Trc-Trm),利用公式(7),求解出处于由事故影响状态恢复为正常状态临界点所在路段Lmrs,则已恢复正常状态路段的总长度Lr=L1+L2+…+Lm-1+Lmrs,已恢复正常状态路段为{A1,A2,…,Am};
步骤104-2-25),按照事故未处理完成前计算处于事故影响状态路段长度的方法,继续计算事故影响范围,即受过事故影响的所有路段{A1,A2…An};
步骤104-2-26),对比上述两个步骤的计算结果,当m<n时处于事故影响状态而未恢复的路段为{Am,Am+1,…An},处于事故影响状态路段的总长度Ly=Lm-Lmrs+Lm+1+…+Ln-1+Lnys;当m=n且Lnys>Lmrs时于事故影响状态而未恢复的路段为{An},处于事故影响状态路段的总长度Ly=Lnys-Lmrs;当m=n且Lnys<=Lmrs时或m>n时,所有路段均恢复正常状态,处于事故影响状态路段的总长度Ly=0。

6.  一种基于浮动车数据的城市道路交通事故影响预测系统,所述系统包含:
浮动历史数据预处理模块,用于查询相关路段浮动车历史数据,并对浮动车历史数据进行预处理,得到相应路段的正常状态下的车辆平均速度和车流密度;
浮动实时数据预处理模块,用于查询相关路段浮动车实时数据,并对浮动车实 时数据进行预处理,得出相应路段目前的车辆平均速度;
路网数据预处理模块,用于查询城市道路交通事故路段的路网数据,并通过处理得到周边路段的拓扑结构和相应路段满载时的车流密度;
其中,路段满载时车流密度的计算公式如下:
Km=NmL=L×nroadlcar+ls/L=nroadlcar+ls;]]>
预测模块,用于根据预处理后的浮动车历史数据、浮动车实时数据和路网拓扑关系数据,对事故及事故周边路段的影响进行预测分析;
其中,L为路段长度,nraod为路段车道数,lcar为汽车平均长度,ls为汽车间的平均间隔距离。

7.  根据权利要求6所述的基于浮动车数据的城市道路交通事故影响预测系统,其特征在于,所述浮动历史数据预处理模块采用如下公式得到正常状态下的车辆平均速度和车流密度:
K=NL=Nf/αL]]>
v=(v1+v2+…+vn)/n
其中,N为某一时刻某路段上的车辆数,L为路段的长度,Nf为该路段上的浮动车数,α为浮动车在该段路段所占车辆总数的比例,v1,v2……vn为该路段上浮动车的速度。

8.  根据权利要求6所述的基于浮动车数据的城市道路交通事故影响预测系统,其特征在于,所述预测模块进一步包含:
第一处理模块,用于获取单一路段由正常状态转化为事故影响状态,并由事故影响状态转化为正常状态的演化太阳城集团和演化的路段长度;
第二处理模块,用于通过路网拓扑关系,对城市道路交通事故周边上游路网由近及远进行分段并分别编号为{A1,A2,…Ap},并依据得到的演化太阳城集团和演化的路段长度,对事故未处理完成前和事故处理完成后的一定太阳城集团段内的交通状况进行预测。

9.  根据权利要求8所述的基于浮动车数据的城市道路交通事故影响预测系统,其特征在于,所述第一处理模块进一步包含:
第一演变太阳城集团处理模块,用于道路的某一路段由正常状态转变为事故影响状态的演变太阳城集团Ty计算公式如下:
Ty=L*Km-L*KV*K-Vs*Km---(4)]]>
第一演变路程处理模块,用于基于演变太阳城集团得到演变路段的长度,太阳城集团T内演变的路段长度为:
Ly=T*(V*K-Vs*Km)Km-K---(5)]]>
第二演变太阳城集团处理模块,用于获得由事故影响状态转变为正常状态的演变太阳城集团Tr,计算公式如下:
Tr=L*Km-L*K(V-Vs)*Km---(6)]]>
第二演变路程处理模块,用于基于演变太阳城集团得到演变路段的长度,太阳城集团T内演变的路段长度为:
Lr=T*Km*(V-Vs)Km-K---(7)]]>
其中,Km为该路段满载时车流密度,L为路段长度,K为该路段正常车流密度,V为正常平均速度,Vs为事故后路段平均速度。

10.  根据权利要求9所述的基于浮动车数据的城市道路交通事故影响预测方法,其特征在于,所述第二处理模块进一步包含:
当给定事故发生后太阳城集团Ta1时段内的事故影响范围计算过程如下,其中,Ta1<Ta;
路段划分模块,用于通过路网拓扑关系,对城市道路交通事故周边上游路网由近及远进行分段并分别编号为{A1,A2,…Ap};
第一事故路段预测模块,用于:
由事故路段开始由近及远,通过公式(4)求解各路段的状态转换太阳城集团Tyn;
将各路段的转换太阳城集团Tyn进行累加,计算各上游分路段的事故影响状态的总太阳城集团 Tyc=Ty1+Ty2+…+Tyn;
重复上步骤,直到Tyc>Ta1,令T=Ta1-(Tyc-Tyn),利用公式(5),求解出处于事故影响状态的最外围路段中受影响的长度Lnys,则处于事故影响状态路段的总长度Ly=L1+L2+…+L(n-1)+Lnys,处于事故影响状态的路段集合为{A1,A2,…,An};
当事故处理完成后给定事故发生后太阳城集团Ta2时的事故影响范围计算过程如下,其中,Ta2>Ta:
路段划分模块,用于通过路网拓扑关系,对城市道路交通事故周边上游路网由近及远进行分段并分别编号为{A1,A2,…Ap};
第二事故路段预测模块,用于由事故路段开始由近及远,通过公式(6)求解各路段的状态转化太阳城集团Trm;
将状态转换太阳城集团进行累加,计算出各上游分路段的事故影响状态恢复正常状态的总太阳城集团Trc=Tr1+Tr2+…+Trm;
重复上步骤,直到Trc>Ta2,令T=Ta2-(Trc-Trm),利用公式(7),求解出处于由事故影响状态恢复为正常状态临界点所在路段Lmrs,则已恢复正常状态路段的总长度Lr=L1+L2+…+Lm-1+Lmrs,已恢复正常状态路段为{A1,A2,…,Am};
按照事故未处理完成前计算处于事故影响状态路段长度的方法,继续计算事故影响范围,即受过事故影响的所有路段{A1,A2…An};
对比上述两个步骤的计算结果,当m<n时处于事故影响状态而未恢复的路段为{Am,Am+1,…An},处于事故影响状态路段的总长度Ly=Lm-Lmrs+Lm+1+…+Ln-1+Lnys;当m=n且Lnys>Lmrs时于事故影响状态而未恢复的路段为{An},处于事故影响状态路段的总长度Ly=Lnys-Lmrs;当m=n且Lnys<=Lmrs时或m>n时,所有路段均恢复正常状态,处于事故影响状态路段的总长度Ly=0。

说明书

说明书一种基于浮动车数据的城市道路交通事故影响预测方法
技术领域
本发明涉及一种交通事故影响的预测方法,具体涉及一种基于浮动车数据的城市道路交通事故影响预测方法。
背景技术
随着我国机动车保有量的快速上升和基础设施建设趋于饱和,城市交通压力越来越大,交通流运行的稳定性也随之降低,城市道路交通事故的快速反应、处理对于城市交通的正常运行显得尤为重要。
目前,传统的城市道路交通事故处理方法主要是简单的发现事故、处理事故,对于事故的影响范围很难做出准确的判断和预警。如何快速准确的对事故地及周边路段影响范围进行预测,并在此基础上进行事故处理方案的制定,对于提高城市道路交通事故处理效率,降低交通事故影响具有重要作用。
专利号为“201010533022”的专利申请中给出了一种基于固定检测器的城市道路交通事故影响范围确定方法;专利号为“201120084414.9”的专利申请中给出了一种高速公路交通事故影响预测与控制系统的实现方法;专利号为“201110231292.6”的专利申请中提出了一种基于交通波理论的高速公路事故影响范围的确定方法,用于在无出入口匝道的高速公路上发生交通事故后确定交通事故的时空影响范围。
城市道路交通事故影响范围的预测对于针对特定交通事故及时制定出有针对性的、高效的事故处理方案具有重要意义。但目前对于城市道路交通事故影响范围的预测还存在一定的弊端,主要有:
(1)对于城市道路交通事故影响范围的预测方法较少,有些只是对城市道路交通事故影响范围的实时监测或是简单预测,而没有针对特定路段,特定太阳城集团的城市道路交通事故影响进行有针对性的预测。
(2)有些城市道路交通事故影响范围的预测方法需要安装大量固定的监测器,建设成本较高。
(3)目前有一些针对高速公路交通事故影响预测的方法,但由于高速公路和城市交通有着较大的差异,无法直接应用到城市道路交通事故影响的预测中。
发明内容
本发明的目的是提供一种基于浮动车数据的城市道路交通事故影响范围预测的方法,综合利用浮动车历史数据、浮动车实时数据以及路网数据对城市道路交通事故影响范围做出准确的预测,为事故的处理提供有效的数据支持和依据。
为了实现上述目的,本发明提供了一种基于浮动车数据的城市道路交通事故影响预测方法,所述方法包含:
步骤101)查询相关路段浮动车历史数据,并对浮动车历史数据进行预处理,得到相应路段的正常状态下的车辆平均速度和车流密度;
步骤102)查询相关路段浮动车实时数据,并对浮动车实时数据进行预处理,得出相应路段目前的车辆平均速度;
步骤103)查询城市道路交通事故路段的路网数据,并通过处理得到周边路段的拓扑结构和相应路段满载时的车流密度;
其中,路段满载时车流密度的计算公式如下:
Km=NmL=L×nroadlcar+ls/L=nroadlcar+ls;]]>
步骤104)根据预处理后的浮动车历史数据、浮动车实时数据和路网拓扑关系数据,对事故及事故周边路段的影响进行预测分析;
其中,L为路段长度,nraod为路段车道数,lcar为汽车平均长度,ls为汽车间的平均间隔距离。
可选的,上述步骤101)采用如下公式得到正常状态下的车辆平均速度和车流密度:
K=NL=Nf/αL]]>
v=(v1+v2+…+vn)/n
其中,N为某一时刻某路段上的车辆数,L为路段的长度,Nf为该路段上的浮动车数,α为浮动车在该段路段所占车辆总数的比例,v1,v2……vn为该路段上浮动车的速度。
可选的,上述步骤104)进一步包含:
步骤104-1)获取单一路段由正常状态转化为事故影响状态,并由事故影响状态转化为正常状态的演化太阳城集团和演化的路段长度;
步骤104-2)通过路网拓扑关系,对城市道路交通事故周边上游路网由近及远进行分段并分别编号为{A1,A2,…Ap},并依据得到的演化太阳城集团和演化的路段长度,对事故未处理完成前和事故处理完成后的一定太阳城集团段内的交通状况进行预测。
可选的,上述步骤104-1)进一步包含:
步骤104-1-1)道路某一路段由正常状态转变为事故影响状态的演变太阳城集团Ty计算公式如下:
Ty=L*Km-L*KV*K-Vs*Km---(4)]]>
步骤104-1-2)基于演变太阳城集团得到演变路段的长度,太阳城集团T内演变的路段长度为:
Ly=T*(V*K-Vs*Km)Km-K---(5)]]>
步骤104-1-3)获得由事故影响状态转变为正常状态的演变太阳城集团Tr,计算公式如下:
Tr=L*Km-L*K(V-Vs)*Km---(6)]]>
步骤104-1-4)基于演变太阳城集团得到演变路段的长度,太阳城集团T内演变的路段长度为:
Lr=T*Km*(V-Vs)Km-K---(7)]]>
其中,Km为该路段满载时车流密度,L为路段长度,K为该路段正常车流密度,V为正常平均速度,Vs为事故后路段平均速度。
可选的,上述步骤104-2)进一步包含:
当给定事故发生后太阳城集团Ta1时段内的事故影响范围计算过程如下,其中,Ta1<Ta;
步骤104-2-11)通过路网拓扑关系,对城市道路交通事故周边上游路网由近及远进行分段并分别编号为{A1,A2,…Ap};
步骤104-2-12),由事故路段开始由近及远,通过公式(4)求解各路段的状态转换太阳城集团Tyn;
步骤104-2-13),将各路段的转换太阳城集团Tyn进行累加,计算各上游分路段的事故影响状态的总太阳城集团Tyc=Ty1+Ty2+…+Tyn;
步骤104-2-14),重复上步骤,直到Tyc>Ta1,令T=Ta1-(Tyc-Tyn),利用公式(5),求解出处于事故影响状态的最外围路段中受影响的长度Lnys,则处于事故影响状态路段的总长度Ly=L1+L2+…+L(n-1)+Lnys,处于事故影响状态的路段集合为{A1,A2,…,An};
当事故处理完成后给定事故发生后太阳城集团Ta2时的事故影响范围计算过程如下,其中,Ta2>Ta:
步骤104-2-21)通过路网拓扑关系,对城市道路交通事故周边上游路网由近及远进行分段并分别编号为{A1,A2,…Ap};
步骤104-2-22)由事故路段开始由近及远,通过公式(6)求解各路段的状态转化太阳城集团Trm;
步骤104-2-23),将状态转换太阳城集团进行累加,计算出各上游分路段的事故影响状态恢复正常状态的总太阳城集团Trc=Tr1+Tr2+…+Trm;
步骤104-2-24),重复上步骤,直到Trc>Ta2,令T=Ta2-(Trc-Trm),利用公式(7),求解出处于由事故影响状态恢复为正常状态临界点所在路段Lmrs,则已恢复正常状态路段的总长度Lr=L1+L2+…+Lm-1+Lmrs,已恢复正常状态路段为{A1,A2,…,Am};
步骤104-2-25),按照事故未处理完成前计算处于事故影响状态路段长度的方法,继续计算事故影响范围,即受过事故影响的所有路段{A1,A2…An};
步骤104-2-26),对比上述两个步骤的计算结果,当m<n时处于事故影响状态而未恢复的路段为{Am,Am+1,…An},处于事故影响状态路段的总长度Ly=Lm-Lmrs+Lm+1+…+Ln-1+Lnys;当m=n且Lnys>Lmrs时于事故影响状态而未恢复的路段为{An},处于事故影响状态路段的总长度Ly=Lnys-Lmrs;当m=n且Lnys<=Lmrs时或m>n时,所有路段均恢复正常状态,处于事故影响状态路段的总长度Ly=0。
此外,本发明还提供了一种基于浮动车数据的城市道路交通事故影响预测系统,所述系统包含:
浮动历史数据预处理模块,用于查询相关路段浮动车历史数据,并对浮动车历史数据进行预处理,得到相应路段的正常状态下的车辆平均速度和车流密度;
浮动实时数据预处理模块,用于查询相关路段浮动车实时数据,并对浮动车实时数据进行预处理,得出相应路段目前的车辆平均速度;
路网数据预处理模块,用于查询城市道路交通事故路段的路网数据,并通过处理得到周边路段的拓扑结构和相应路段满载时的车流密度;
其中,路段满载时车流密度的计算公式如下:
Km=NmL=L×nroadlcar+ls/L=nroadlcar+ls;]]>
预测模块,用于根据预处理后的浮动车历史数据、浮动车实时数据和路网拓扑关系数据,对事故及事故周边路段的影响进行预测分析;
其中,L为路段长度,nraod为路段车道数,lcar为汽车平均长度,ls为汽车间的平均间隔距离。
可选的,上述浮动历史数据预处理模块采用如下公式得到正常状态下的车辆平均速度和车流密度:
K=NL=Nf/αL]]>
v=(v1+v2+…+vn)/n
其中,N为某一时刻某路段上的车辆数,L为路段的长度,Nf为该路段上的浮动车数,α为浮动车在该段路段所占车辆总数的比例,v1,v2……vn为该路段上浮动车的速度。
可选的,上述预测模块进一步包含:
第一处理模块,用于获取单一路段由正常状态转化为事故影响状态,并由事故影响状态转化为正常状态的演化太阳城集团和演化的路段长度;
第二处理模块,用于通过路网拓扑关系,对城市道路交通事故周边上游路网由近及远进行分段并分别编号为{A1,A2,…Ap},并依据得到的演化太阳城集团和演化的路段长度,对事故未处理完成前和事故处理完成后的一定太阳城集团段内的交通状况进行预测。
可选的,上述第一处理模块进一步包含:
第一演变太阳城集团处理模块,用于道路的某一路段由正常状态转变为事故影响状态的演变太阳城集团Ty计算公式如下:
Ty=L*Km-L*KV*K-Vs*Km---(4)]]>
第一演变路程处理模块,用于基于演变太阳城集团得到演变路段的长度,太阳城集团T内演变的路段长度为:
Ly=T*(V*K-Vs*Km)Km-K---(5)]]>
第二演变太阳城集团处理模块,用于获得由事故影响状态转变为正常状态的演变太阳城集团Tr,计算公式如下:
Tr=L*Km-L*K(V-Vs)*Km---(6)]]>
第二演变路程处理模块,用于基于演变太阳城集团得到演变路段的长度,太阳城集团T内演变的路段长度为:
Lr=T*Km*(V-Vs)Km-K---(7)]]>
其中,Km为该路段满载时车流密度,L为路段长度,K为该路段正常车流密度,V为正常平均速度,Vs为事故后路段平均速度。
可选的,上述第二处理模块进一步包含:
当给定事故发生后太阳城集团Ta1时段内的事故影响范围计算过程如下,其中,Ta1<Ta;
路段划分模块,用于通过路网拓扑关系,对城市道路交通事故周边上游路网由近及远进行分段并分别编号为{A1,A2,…Ap};
第一事故路段预测模块,用于:
由事故路段开始由近及远,通过公式(4)求解各路段的状态转换太阳城集团Tyn;
将各路段的转换太阳城集团Tyn进行累加,计算各上游分路段的事故影响状态的总太阳城集团Tyc=Ty1+Ty2+…+Tyn;
重复上步骤,直到Tyc>Ta1,令T=Ta1-(Tyc-Tyn),利用公式(5),求解出处于事故影响状态的最外围路段中受影响的长度Lnys,则处于事故影响状态路段的总长度Ly= L1+L2+…+L(n-1)+Lnys,处于事故影响状态的路段集合为{A1,A2,…,An};
当事故处理完成后给定事故发生后太阳城集团Ta2时的事故影响范围计算过程如下,其中,Ta2>Ta:
路段划分模块,用于通过路网拓扑关系,对城市道路交通事故周边上游路网由近及远进行分段并分别编号为{A1,A2,…Ap};
第二事故路段预测模块,用于由事故路段开始由近及远,通过公式(6)求解各路段的状态转化太阳城集团Trm;
将状态转换太阳城集团进行累加,计算出各上游分路段的事故影响状态恢复正常状态的总太阳城集团Trc=Tr1+Tr2+…+Trm;
重复上步骤,直到Trc>Ta2,令T=Ta2-(Trc-Trm),利用公式(7),求解出处于由事故影响状态恢复为正常状态临界点所在路段Lmrs,则已恢复正常状态路段的总长度Lr=L1+L2+…+Lm-1+Lmrs,已恢复正常状态路段为{A1,A2,…,Am};
按照事故未处理完成前计算处于事故影响状态路段长度的方法,继续计算事故影响范围,即受过事故影响的所有路段{A1,A2…An};
对比上述两个步骤的计算结果,当m<n时处于事故影响状态而未恢复的路段为{Am,Am+1,…An},处于事故影响状态路段的总长度Ly=Lm-Lmrs+Lm+1+…+Ln-1+Lnys;当m=n且Lnys>Lmrs时于事故影响状态而未恢复的路段为{An},处于事故影响状态路段的总长度Ly=Lnys-Lmrs;当m=n且Lnys<=Lmrs时或m>n时,所有路段均恢复正常状态,处于事故影响状态路段的总长度Ly=0。
上述路段长度L来源于路网数据,路段车道数nraod来源于路网数据,车平均长度lcar为统计经验值,汽车间的平均间隔距离ls为统计经验值,路段上的浮动车数Nf为浮动车数据的统计值。
与现有技术相比,本发明有益技术效果在于:
(1)本发明采用浮动车数据结合路网数据实现了对城市道路交通事故影响范围的预测,可针对特定事故进行有针对性的预测。
(2)本发明以浮动车数据作为预测的数据输入,这些数据具有较高的准确性,从而在预测数据依据上保证了本发明预测结果的准确性。
(3)本发明通过对城市道路交通事故影响范围的预测,为城市道路交通事故的处理提供有效的数据支持和依据。
附图说明
图1本发明提供的方法整体框架图;
图2是单一路段正常状态与交通事故影响状态转化示意图;
图3是城市道路交通事故影响整体演化示意图,其中,图中虚线表示正常状态路段,实线表示事故影响路段,类似于星型的图例表示城市交通事故。
具体实施方式
下面结合附图和具体实施例对本发明的技术方案进行详细的说明。
本发明的预测方法的主要业务流程和模块如图1所示,当有城市道路交通事故太阳城集团输入时,城市道路交通事故影响预测部分根据输入的事故太阳城集团结合浮动车历史数据、浮动车实时数据及路网数据对事故影响范围进行预测。
本发明所提出的方法具体包括如下分步骤:浮动车历史数据预处理,浮动车实时数据预处理,路网数据预处理,城市道路交通事故影响预测。下面对各步骤进行详细说明。
一、浮动车历史数据预处理,该步骤主要完成浮动车历史数据单位太阳城集团的统计分析。由于原始浮动车历史数据每条数据保存的是单个车辆单位太阳城集团的数据(浮动车车辆编号、太阳城集团、经纬度坐标、瞬时速度、行驶方位角和运行状态),需要对这些数据进行统计和分析。在浮动车历史数据预处理步骤中,首先根据给定条件(日期、太阳城集团段、路段)查询相关浮动车历史数据,然后对数据进行统计分析,求解出该路段该时刻的车流密度和平均速度。具体计算方法如下:
车流密度K=NL=Nf/αL---(1)]]>
式中,N为某一时刻某路段上的车辆数,L为路段的长度,Nf为该路段上的浮动车数,α为浮动车在该段路段所占车辆总数的比例,为经验值。
平均速度v=(v1+v2+…+vn)/n    (2)
式中v1,v2,vn为该路段上浮动车的速度。
二、浮动车实时数据预处理,该步骤主要完成浮动车实时数据的统计分析。
通过实时数据(浮动车车辆编号、太阳城集团、经纬度坐标、瞬时速度、行驶方位角和运行状态)计算出给定路段的车流平均速度。计算方法同浮动车历史数据预处理。
三、路网数据预处理,该步骤主要完成路网拓扑结构处理和路段满载时车流密度Km的计算。
路网拓扑结构处理,主要完成城市道路交通事故发生路段周边拓扑结构的查询,即找到事故路段周边的路段连接关系。通过查询路网太阳城集团数据库的太阳城集团,找的给定路段的上游路段和下游路段,通过迭代的方法就可得到事故路段附近整个路网拓的扑关系。
路段满载时车流密度的计算可由公式(3)得出:
Km=NmL=L×nroadlcar+ls/L=nroadlcar+ls;]]>
式中,L为路段长度,nraod为路段车道数,lcar为汽车平均长度,ls为汽车间的平均间隔距离。
四、城市道路交通事故影响预测,该步骤主要完成根据城市道路交通事故太阳城集团并利用预处理后的浮动车历史数据、浮动车实时数据和路网拓扑关系数据,对事故及周边路段的影响进行预测。
(一)城市道路交通事故周边路段正常状态下平均车流密度和平均速度的确定。
平均速度以实时数据计算的平均速度作为下一步的计算依据,若本太阳城集团段没有浮动车的实时数据,则以在相同条件下的历史数据计算得出的平均速度作为下一步的计算依据。
平均车流密度则以相同条件下的历史数据计算得出的平均车流密度作为下一步的计算依据。
(二)城市道路交通事故等级的划分
城市道路交通事故太阳城集团,包括事故位置、发生太阳城集团和事故等级。按照不同的事故等级,建立以下几个参数:事故后事故路段平均通行速度Vs,事故处理预计需要太阳城集团Ta。这里把城市道路交通事故划分为1、2、3三个级别,具体如表1所示:
表1城市道路交通事故等级划分表
事故等级事故后路段平均速度Vs事故预计处理需要太阳城集团Ta1V1T12V2T23V3T3
(三)单一路段正常状态与事故影响状态转化的相关计算
(1)道路某一路段由正常状态转变为事故影响状态(城市道路交通事故周边路网平均速度受事故影响降低为事故后路段平均速度状态)演变太阳城集团Ty计算如公式4所示:
Ty=L*Km-L*KV*K-Vs*Km---(4)]]>
其中Km为该路段满载时车流密度,L为路段长度,K为该路段正常车流密度,V为正常平均速度,Vs为事故后路段平均速度。
通过对公式变换可得,太阳城集团T内演变的路段长度为:
Ly=T*(V*K-Vs*Km)Km-K---(5)]]>
(2)由事故影响状态转变为正常状态演变太阳城集团Tr,如:
Tr=L*Km-L*K(V-Vs)*Km---(6)]]>
通过对公式变换可得,太阳城集团T内演变的路段长度为:
Lr=T*Km*(V-Vs)Km-K---(7)]]>
(四)城市道路交通事故影响范围的预测
通过路网拓扑关系,对城市道路交通事故周边上游路网由近及远进行分段并分别编号为{A1,A2,…Ap}。
(1)在事故未处理完成前如图3中2,3所示,给定事故发生后太阳城集团Ta1(Ta1< Ta)时的事故影响范围计算过程如下:
第一步,由事故路段开始由近及远,通过公式(4)求解各路段的状态转换太阳城集团Tyn。
第二步,然后进行累加,计算出各上游分路段的事故影响状态的总太阳城集团Tyc=Ty1+Ty2+…+Tyn。
第三步,重复第二步,直到Tyc>Ta1,令T=Ta1-(Tyc-Tyn),利用公式(5),求解出处于事故影响状态的最外围路段中受影响的长度Lnys,则处于事故影响状态路段的总长度Ly=L1+L2+…+L(n-1)+Lnys,处于事故影响状态的路段集合为{A1,A2,…,An}。
(2)在事故处理完成后如图3中4所示,给定事故发生后太阳城集团Ta2(Ta2>Ta)时的事故影响范围计算过程如下:
第一步由事故路段开始由近及远,通过公式(6)求解各路段的状态转化太阳城集团Trm。
第二步,然后进行累加,计算出各上游分路段的事故影响状态恢复正常状态的总太阳城集团Trc=Tr1+Tr2+…+Trm。
第三步,重复第二步,直到Trc>Ta2,令T=Ta2-(Trc-Trm),利用公式(7),求解出处于由事故影响状态恢复为正常状态临界点所在路段Lmrs,则已恢复正常状态路段的总长度Lr=L1+L2+…+Lm-1+Lmrs,已恢复正常状态路段为{A1,A2,…,Am}。
第四步,按照事故未处理完成前计算处于事故影响状态路段长度的方法,继续计算事故影响范围,即受过事故影响的所有路段{A1,A2…An}。
第五步,对比第四步和前三步的计算结果,当m<n时处于事故影响状态而未恢复的路段为{Am,Am+1,…An},处于事故影响状态路段的总长度Ly=Lm-Lmrs+Lm+1+…+Ln-1+Lnys。当m=n且Lnys>Lmrs时于事故影响状态而未恢复的路段为{An},处于事故影响状态路段的总长度Ly=Lnys-Lmrs。当m=n且Lnys<=Lmrs时或m>n时,所有路段均恢复正常状态,处于事故影响状态路段的总长度Ly=0,如图3中1所示。
(3)城市道路交通事故影响时空变化预测
以城市道路交通事故发生时刻起,设定一定的太阳城集团间隔,针对不同时刻利用(1)(2)部分的方法,计算出该太阳城集团点的城市事故影响范围,从而就可得到整个的事故 影响范围随太阳城集团的演化过程即城市道路交通事故影响的时空变化过程。
最后所应说明的是,以上实施例仅用以说明本发明的技术方案而非限制。尽管参照实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,对本发明的技术方案进行修改或者等同替换,都不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。

关 键 词:
一种 基于 浮动 数据 城市道路 交通事故 影响 预测 方法
  专利查询网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
太阳城集团本文
本文标题:一种基于浮动车数据的城市道路交通事故影响预测方法.pdf
链接地址:http://zh228.com/p-6220833.html
太阳城集团我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服客服 - 联系我们

copyright@ 2017-2018 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备17046363号-1 
 


收起
展开
葡京赌场|welcome document.write ('');