太阳城集团

  • / 10
  • 下载费用:30 金币  

基于KA模式仿真星间伪距及星上太阳城集团基准建立的方法.pdf

摘要
申请专利号:

太阳城集团CN201310541037.0

申请日:

2013.11.04

公开号:

CN103630909A

公开日:

2014.03.12

当前法律状态:

撤回

有效性:

无权

法律详情: 发明专利申请公布后的视为撤回IPC(主分类):G01S 19/00申请公布日:20140312|||实质审查的生效IPC(主分类):G01S 19/00申请日:20131104|||公开
IPC分类号: G01S19/00(2010.01)I; G04R20/02(2013.01)I 主分类号: G01S19/00
申请人: 中国科学院国家授时中心
发明人: 钦伟瑾; 孙保琪; 韦沛; 杨海彦; 孔垚; 杨旭海
地址: 710600 陕西省西安市临潼区书院东路3号
优先权:
专利代理机构: 西北工业大学专利中心 61204 代理人: 顾潮琪
PDF完整版下载: PDF下载
法律状态
申请(专利)号:

太阳城集团CN201310541037.0

授权太阳城集团号:

||||||

法律状态太阳城集团日:

2016.03.23|||2014.04.09|||2014.03.12

法律状态类型:

太阳城集团发明专利申请公布后的视为撤回|||实质审查的生效|||公开

摘要

本发明提供了一种基于Ka模式仿真星间伪距及星上太阳城集团基准建立的方法,首先,进行历元归化,将两星之间双向测量伪距归化为同一时刻;然后,将同一时刻的星间双向观测数据作差,修正系统误差,计算有直接测量链路的两颗卫星间的相对钟差;最后,借助星间相对钟差,解算各导航卫星相对于某一太阳城集团基准的广播钟差。本发明解决了星间相对钟差缺乏太阳城集团基准的问题,太阳城集团同步精度在纳秒量级。

权利要求书

权利要求书
1.  一种基于Ka模式仿真星间伪距及星上太阳城集团基准建立的方法,其特征在于包括下述步骤:
步骤1:按照Ka测距模式,以3s为测量间隔从IGS网站下载精密轨道和精密钟差,从而得到星间距离;
步骤2:经过历元归化后,每一对有测量链路的卫星中,两颗卫星A和B在同一时刻tr接收到对方发出的无线电测距信号,分别测量出两星之间的伪距ρBA和ρAB,
ρAB=ρ0AB+δA(tr)-δB(te1)+(δdtB+δtclyB)+(δdrA+δrclyA)+δrel_AB+ϵAB]]>
ρBA=ρ0BA+δB(tr)-δA(te2)+(δdtA+δtclyA)+(δdrB+δrclyB)+δrel_BA+ϵBA]]>
te1为卫星B的信号发射时刻,te2为卫星A的信号发射时刻;
ρ0AB为卫星A在信号接收时刻的位置与卫星B在信号发射时刻的位置之间的几何距离;ρ0BA为卫星B在信号接收时刻的位置与卫星A在信号发射时刻的位置之间的几何距离;δA(tr)为卫星A在信号接收时刻tr的星钟差;
δB(tr)为卫星B在信号发射时刻tr的星钟差;
δB(te1)为卫星B在信号发射时刻te1的星钟差;
δA(te2)为卫星A在信号发射时刻te2的星钟差;
为卫星A、B的发射端时延;
为卫星A、B的接收端时延;
分别为由于温度引起的卫星A、B发射端时延的周期变化部分;
分别为由于温度引起的卫星A、B接收端时延的周期变化部分;
δrel_AB、δrel_BA是源自卫星钟的周期性相对论效应;
εAB、εAB均为随机噪声;
步骤3:根据星间伪距测量公式,计算每一对有测量链路的卫星对的星间钟差,实现星间太阳城集团同步;
所述的星间伪距测量公式为
ρAB-ρBA=ρ0AB-ρ0BA+2(δA(tr)-δB(tr))+δrel_AB-δrel_BA+ε;
所述每一对有测量链路的卫星对的星间钟差为
δA(tr)-δB(tr)=12[ρAB-ρBA-(ρ0AB-ρ0BA)-(δrel_AB-δrel_BA)+ϵ];]]>
步骤4:修正每一对有测量链路的卫星的星间钟差的相关系统误差,其中,ρAB中的周期性相对论效应δrel_AB=2XB(tr)·VB(tr)/c,ρBA中的周期性相对论效应δrel_BA=2XA(tr)·VA(tr)/c;
双向传播路径之差ρ0AB-ρ0BA=(XA(tr)-XB(tr))·VAc-(XB(tr)-XA(tr))·VBc=(XA(tr)-XB(tr))c(VA+VB);]]>
其中,Xi(tr)表示卫星i在接收时刻的位置,Vi(tr)表示卫星在接收时刻的速度,c为光速,Xi(te)为卫星i在信号发射时刻的位置;
最终得到卫星A、B的星间钟差为
δA(tr)-δB(tr)=12(ρAB-ρBA-(XA(tr)-XB(tr))c(VA+VB)-2c(XB(tr)·VB(tr)-XA(tr)·VA(tr))+ϵ);]]>
步骤5:以卫星2小时运行的弧段为单位进行解算,在解算过程中进行数据质量控制,以最小二乘参数估计策略得出每个卫星相对于基准星的钟差a0、钟速a1和钟漂a2,得到钟差的确定性部分x(t)=a0+a1(t-t0)+a2(t-t0)2,其中,t0为初始时刻,t为钟差变化时刻;
步骤6:基于调频白噪声调频闪变噪声和调频随机游走噪声得到钟差的随机部分y=yiWF+yiRW+yiFF,]]>其中,yiWF=3h02τ(randi),yiRW=yi-1RW+4h-2π2τ6·3·(randi),]]>yiFF=2ln(2)h-1·5·Σk=1i(i+1-k)-2/3(randi),i=1..N,randi-N(0,1),]]>h-2、h0和h-1为调频随机游走噪声、调频随机白噪声和调频随机闪变噪声;
步骤7:由钟差的确定性部分和钟差的随机部分得到每颗卫星的钟差Hi;
步骤8:导航卫星星上综合原子时其中,Ai和Bi分别为t0时刻第i台钟的钟差和钟速,Pi为第i台钟的权,

说明书

说明书基于Ka模式仿真星间伪距及星上太阳城集团基准建立的方法
技术领域
本发明涉及星间伪距仿真方法及星上太阳城集团基准建立方法,属于卫星导航领域。
背景技术
自主太阳城集团同步技术是实现自主导航的关键技术之一,在脱离地面站支持的情况下,利用星座可见卫星之间所建立的星间链路进行双向测距和太阳城集团交换,对星上时钟参数进行滤波处理,实现星间太阳城集团同步。由于UHF测距体制(一发多收的信号播发方式)始终存在抗干扰性差、链路通信速率低等诸多问题,GPSⅢ卫星已经设想使用精度更高、抗干扰能力更强的Ka测距体制(点对点的信号播发方式)取代UHF测距体制,从而Ka模式的星间伪距成为众多学者研究的热点。星间伪距仅是一种相对观测量,只能确定星间相对钟差,不能确定卫星相对系统太阳城集团基准的绝对钟差,因此Ka模式伪距的仿真方法,卫星钟差的确定及星上太阳城集团基准的建立成为自主导航太阳城集团同步的研究热点。
发明内容
为了克服现有技术的不足,本发明提供一种Ka模式星间伪距的仿真方法及星上太阳城集团基准建立的方法,以解决利用星间伪距解算的钟差缺乏太阳城集团基准的问题。
本发明解决其技术问题所采用的技术方案包括以下步骤:
步骤1:按照Ka测距模式,以3s为测量间隔从IGS网站下载精密轨道和精密钟差,从而得到星间距离;
步骤2:经过历元归化后,每一对有测量链路的卫星中,两颗卫星A和B在同一时刻tr接收到对方发出的无线电测距信号,分别测量出两星之间的伪距ρBA和ρAB,
ρAB=ρ0AB+δA(tr)-δB(te1)+(δdtB+δtclyB)+(δdrA+δrclyA)+δrel_AB+ϵAB]]>
ρBA=ρ0BA+δB(tr)-δA(te2)+(δdtA+δtclyA)+(δdrB+δrclyB)+δrel_BA+ϵBA]]>
te1为卫星B的信号发射时刻,te2为卫星A的信号发射时刻;
ρ0AB为卫星A在信号接收时刻的位置与卫星B在信号发射时刻的位置之间的几何距离;ρ0BA为卫星B在信号接收时刻的位置与卫星A在信号发射时刻的位置之间的几何距离;δA(tr)为卫星A在信号接收时刻tr的星钟差;
δB(tr)为卫星B在信号发射时刻tr的星钟差;
δB(te1)为卫星B在信号发射时刻te1的星钟差;
δA(te2)为卫星A在信号发射时刻te2的星钟差;
为卫星A、B的发射端时延;
为卫星A、B的接收端时延;
分别为由于温度引起的卫星A、B发射端时延的周期变化部分;
分别为由于温度引起的卫星A、B接收端时延的周期变化部分;
δrel_AB、δrel_BA是源自卫星钟的周期性相对论效应;
εAB、εAB均为随机噪声;
步骤3:根据星间伪距测量公式,计算每一对有测量链路的卫星对的星间钟差,实现星间太阳城集团同步;
所述的星间伪距测量公式为
ρAB-ρBA=ρ0AB-ρ0BA+2(δA(tr)-δB(tr))+δrel_AB-δrel_BA+ε;
所述每一对有测量链路的卫星对的星间钟差为
δA(tr)-δB(tr)=12[ρAB-ρBA-(ρ0AB-ρ0BA)-(δrel_AB-δrel_BA)+ϵ];]]>
步骤4:修正每一对有测量链路的卫星的星间钟差的相关系统误差,其中,ρAB中的周期性相对论效应δrel_AB=2XB(tr)·VB(tr)/c,ρBA中的周期性相对论效应δrel_BA=2XA(tr)·VA(tr)/c;
双向传播路径之差ρ0AB-ρ0BA=(XA(tr)-XB(tr))·VAc-(XB(tr)-XA(tr))·VBc=(XA(tr)-XB(tr))c(VA+VB);]]>
其中,Xi(tr)表示卫星i在接收时刻的位置,Vi(tr)表示卫星在接收时刻的速度,c为光速,Xi(te)为卫星i在信号发射时刻的位置;
最终得到卫星A、B的星间钟差为
δA(tr)-δB(tr)=12(ρAB-ρBA-(XA(tr)-XB(tr))c(VA+VB)-2c(XB(tr)·VB(tr)-XA(tr)·VA(tr))+ϵ);]]>
步骤5:以卫星2小时运行的弧段为单位进行解算,在解算过程中进行数据质量控制,以最小二乘参数估计策略得出每个卫星相对于基准星的钟差a0、钟速a1和钟漂a2,得到钟差的确定性部分x(t)=a0+a1(t-t0)+a2(t-t0)2,其中,t0为初始时刻,t为钟差变化时刻;
步骤6:基于调频白噪声调频闪变噪声和调频随机游走噪声得到钟差的随机部分y=yiWF+yiRW+yiFF,]]>其中,yiWF=3h02τ(randi),yiRW=yi-1RW+4h-2π2τ6·3·(randi),]]>yiFF=2ln(2)h-1·5·Σk=1i(i+1-k)-2/3(randi),i=1..N,randi-N(0,1),]]>h-2、h0和h-1为调频随机游走噪声、调频随机白噪声和调频随机闪变噪声;
步骤7:由钟差的确定性部分和钟差的随机部分得到每颗卫星的钟差Hi;
步骤8:导航卫星星上综合原子时其中,Ai和Bi分别为t0时刻第i台钟的钟差和钟速,Pi为第i台钟的权,
本发明的有益效果是:本发明提出一种基于Ka测距模式的仿真星间伪距的方法及星上太阳城集团基准建立的方法,解决了星间相对钟差缺乏太阳城集团基准的问题,太阳城集团同步精度在纳秒量级。
附图说明
图1是本发明的方法流程图。
具体实施方式
下面结合附图和实施例对本发明进一步说明,本发明包括但不仅限于下述实施例。
本发明包括以下步骤:
步骤1:
利用高精度定位定轨软件BERNESE,按照Ka测距模式(点对点的信号播发方式),测量间隔为3s,从IGS(International GPS Service)网站下载精密轨道和精密钟差,从而得到星间距离;
步骤2:
经过历元归化后,两颗卫星A和B在同一时刻tr(系统太阳城集团)接收到对方发出的无线电测距信号,分别测量出两星之间的伪距ρBA和ρAB。
ρAB=ρ0AB+δA(tr)-δB(te1)+(δdtB+δtclyB)+(δdrA+δrclyA)+δrel_AB+ϵAB---(1)]]>
ρBA=ρ0BA+δB(tr)-δA(te2)+(δdtA+δtclyA)+(δdrB+δrclyB)+δrel_BA+ϵBA---(2)]]>
tr为两颗卫星的信号接收时刻;
te1为卫星B发射信号时刻,te2为卫星A发射信号时刻,均以系统太阳城集团为参考;
ρ0AB为相应卫星A(信号接收时刻)与卫星B(信号发射时刻)之间的几何距离;ρ0BA为相应卫星B(信号接收时刻)与卫星A(信号发射时刻)之间的几何距离;δA(tr)为卫星A在信号接收时刻tr的星钟差;
δB(tr)为卫星B在发射时刻tr的星钟差;
δB(te1)为卫星B在发射时刻te1的星钟差;
δA(te2)为卫星A在发射时刻te2的星钟差;
为卫星A、B发射端时延;
为卫星A、B接收端时延;
分别为由于温度引起的卫星A、B发射端时延周期变化部分;
分别为由于温度引起的卫星A、B接收端时延周期变化部分;
δrel_AB、δrel_BA是源自卫星钟的周期性相对论效应;
εAB、εAB均为随机噪声。
步骤3:
根据星间伪距测量公式,计算每一对有测量链路的卫星对的星间钟差,实现星间太阳城集团同步。考虑到卫星钟均为高精度原子钟,信号在两颗导航卫星(MEO)之间的信号传播时延不超过0.17秒,如此短的太阳城集团之内卫星钟差变化可以忽略不计。发射及接受 端设备时延通过标校可以精确修正。因此(1)、(2)式可以写为
ρAB=ρ0AB+δA(tr)-δB(tr)+δrel_AB+εAB    (3)
ρBA=ρ0BA+δB(tr)-δA(tr)+δrel_BA+εBA    (4)
上面两式相减可得
ρAB-ρBA=ρ0AB-ρ0BA+2(δA(tr)-δB(tr))+δrel_AB-δrel_BA+ε    (5)
δA(tr)-δB(tr)=12[ρAB-ρBA-(ρ0AB-ρ0BA)-(δrel_AB-δrel_BA)+ϵ]---(6)]]>
步骤4:
其中ε为整个系统的随机噪声,通过(6)式可以计算出每一对有测量链路的卫星的星间钟差,但需要修正相关系统误差。
相对论效应修正
由于卫星钟与地面钟处于不同的引力位上,卫星钟相对地面钟具有较大的相对运动速度,按照相对论原理,卫星钟相对地面钟会产生频率偏差即卫星钟的相对论改正。卫星钟相对论改正分为长期变化和周期变化两部分。卫星钟长期变化部分可在卫星发射前通过卫星钟频率而修正,而周期变化部分需要根据卫星位置计算,下面公式中Xi(tr)表示卫星i在接收时刻的位置,Vi(tr)表示卫星在接收时刻的速度,c为光速。则卫星A测量出的伪距ρAB(B卫星发射信号)中的周期性相对论效应为
δrel_AB=2XB(tr)·VB(tr)/c    (7)
类似地,ρBA中的周期性相对论效应为
δrel_BA=2XA(tr)·VA(tr)/c    (8)
传播路径不对称修正
卫星观测过程中,观测时刻的差异及卫星运动会引起双向观测路径的不对称,导致双向的几何路径不相等,造成解算的卫星钟差中包含残余系统差。不过,这一由于信号传播路径不对称造成的系统差可以根据公式严格修正,修正精度取决于预报的卫星位置和卫星速度的精度。Xi(te)为卫星i在信号发射时刻的位置,假定在信号传播过程中卫星的速度恒定。
几何距离
ρ0AB=|XA(tr)-XB(te1)|    (9)
上式可以用信号接收时刻的卫星位置和速度改写为
ρ0AB=|XA(tr)-XB(tr)|-(XB(tr)-XA(tr))·VBc---(10)]]>
类似地有
ρ0BA=|XB(tr)-XA(te2)|    (10)
ρ0BA=|XB(tr)-XA(tr)|-(XA(tr)-XB(tr))·VAc---(11)]]>
则双向传播路径之差
ρ0AB-ρ0BA=(XA(tr)-XB(tr))·VAc-(XB(tr)-XA(tr))·VBc=(XA(tr)-XB(tr))c(VA+VB)---(12)]]>
将上述两类系统误差的修正公式代入星间钟差计算公式(6)中,可得卫星A、B的星间钟差为:
δA(tr)-δB(tr)=12(ρAB-ρBA-(XA(tr)-XB(tr))c(VA+VB)-2c(XB(tr)·VB(tr)-XA(tr)·VA(tr))+ϵ)---(13)]]>
步骤5:
以2小时为一个弧段进行解算,在解算过程中进行数据质量控制,以最小二乘参数估计策略得出每个卫星(相对于基准星)的钟差、钟速、钟漂项。由公式
x(t)=a0+a1(t-t0)+a2(t-t0)2    (14)
可得到钟差的确定性部分;其中,a0为钟差、a1为钟速、a2为钟漂,t0为初始时刻,t为钟差变化时刻。
步骤6:
按照原子钟的物理特性,原子钟噪声可用五种噪声模型来模拟,即调相随机噪声、调相随机游走噪声、调频随机噪声、调频闪变噪声、调频随机游走噪声。上述噪声中,除调频白噪声为随机噪声,可以直接模拟外,其他均为有色噪声,需要借助成形滤波器用白噪声生成。本文以星载铷钟为例进行模拟,由于调相白噪声和调相闪变噪声在目前实际使用的星载铷原子钟噪声模型中不显著,通常不考虑。
yiWF=3h02τ(randi)]]>
yiRW=yi-1RW+4h-2π2τ6·3·(randi)]]>
yiFF=2ln(2)h-1·5·Σk=1i(i+1-k)-2/3(randi)]]>
y=yiWF+yiRW+yiFF]]>
其中,i=1..N,randi-N(0,1)(服从0、1之间的正态分布),N为采样点个数,为调频白噪声,为调频闪变噪声,为调频随机游走噪声;h-2、h0和h-1为调频随机游走噪声、调频白噪声和调频闪变噪声,经验值分别为:h-2=1.76e-32,h0=5e-23,h-1=1.8034e-27,f为傅里叶频率,为1Hz,基于上述三种模拟噪声可得到钟差的随机部分。
步骤7:
由钟差的确定性部分和钟差的随机部分得到每颗卫星的钟差;
步骤8:
导航卫星星上综合原子时的计算公式为:
M(t)=Σi=1nPi[Hi+Ai+Bi(t-t0)]Σi=1nPi---(13)]]>
Hi为第i台钟的钟差,Ai和Bi分别为起点t0时刻第i台钟的钟差和钟速,Pi为第i台钟的权,卫星钟权重Pi是由各卫星钟的稳定度确定的,公式为:
Pi=1std(Hi)2]]>
由此建立起星上太阳城集团基准。
本发明实施时,高精度定位定轨软件BERNESE及自行编写的仿真星间伪距的模块,IGS的精密轨道、精密钟差、地球自转参数和IGS站的坐标文件,matlab编写的钟差解算和建立星上太阳城集团基准的程序。
在BERNESE软件中输入IGS的精密轨道、精密钟差、地球自转参数和IGS站的坐标文件,得到多天的星间伪距。
对得到的星间伪距进行数据预处理,包括误差改正和历元归化。误差改正包括相对论效应改正和传播路径不对称改正,利用卫星的轨道和速度进行改正,历元归化采用拉格朗日七阶多项式内插法,即利用多个历元观测数据对星间观测数据进行多项式建模,实现观测历元太阳城集团同步。
对预处理后的星间伪距进行解算。找出能够进行双向测距的卫星对,以2小时为一个弧段进行解算,以星间相对钟差为输入,以最小二乘参数估计策略得出每个卫星(相对于参考星)的钟差、钟速和钟漂,可得出钟差的确定性部分,钟差的随机性部分-原子钟的噪声由四种随机噪声线性叠加产生,最终得到各卫星的钟差。以此为循环得到多天的星上钟差数据。在处理过程中进行数据质量控制,与IGS钟差比较差别在百纳秒的卫星予以删除。选择短期稳定度好的卫星为基准星,按照规定的采样间隔计算从星和主星之间的相对钟差,从而建立星上太阳城集团基准。
太阳城集团GPSⅢ卫星已经设想使用精度更高、抗干扰能力更强的Ka测距体制,本发明对于在获得星间实测数据后研究太阳城集团同步方法有一定的预研意义。

关 键 词:
基于 KA 模式 仿真 星间伪距 太阳城集团 基准 建立 方法
  专利查询网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
太阳城集团本文
本文标题:基于KA模式仿真星间伪距及星上太阳城集团基准建立的方法.pdf
链接地址:http://zh228.com/p-6220507.html
太阳城集团我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服客服 - 联系我们

copyright@ 2017-2018 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备17046363号-1 
 


收起
展开
葡京赌场|welcome document.write ('');