太阳城集团

  • / 21
  • 下载费用:30 金币  

一种用于含风电场的经济调度的数据处理方法及装置.pdf

摘要
申请专利号:

太阳城集团CN201610574465.7

申请日:

2016.07.20

公开号:

太阳城集团CN106257502A

公开日:

2016.12.28

当前法律状态:

实审

有效性:

审中

法律详情: 实质审查的生效IPC(主分类):G06Q 10/04申请日:20160720|||公开
IPC分类号: G06Q10/04(2012.01)I; G06Q10/06(2012.01)I; G06Q50/06(2012.01)I 主分类号: G06Q10/04
申请人: 广东工业大学
发明人: 梁丽丽; 陈璟华; 丁林军
地址: 510062 广东省广州市越秀区东风东路729号大院
优先权:
专利代理机构: 北京集佳知识产权代理有限公司 11227 代理人: 杨炳财;屈慧丽
PDF完整版下载: PDF下载
法律状态
申请(专利)号:

CN201610574465.7

授权太阳城集团号:

|||

法律状态太阳城集团日:

2017.01.25|||2016.12.28

法律状态类型:

实质审查的生效|||公开

摘要

本发明公开了一种用于含风电场的经济调度的数据处理方法及装置,能够合理考虑火电机组的机械限制,通过设置了禁运域,来快速、准确的得到优化结果。本发明包括:获取参与经济调度的火电机组数量、调度周期、调度周期内各个时段的预测负荷、调度周期内各个时段的旋转备用负荷和火电机组自身的禁运域,构建实际运行的约束条件;获取每台火电机组的参数,构建目标函数;对目标函数和约束条件进行整理,得到发电成本最小化数学模型;根据平均发电成本最小的机组优先满出力为原则,确定机组出力的初值;根据机组出力的初值,计算发电成本最小化数学模型得的解,并根据该解制定经济调度优化方案。

权利要求书

1.一种用于含风电场的经济调度的数据处理方法,其特征在于,包括:
获取参与经济调度的火电机组数量、调度周期、调度周期内各个时段的预测负荷、调度
周期内各个时段的旋转备用负荷和火电机组自身的禁运域,构建实际运行的约束条件;
获取每台火电机组的参数,构建目标函数;
对所述目标函数和所述约束条件进行整理,得到发电成本最小化数学模型;
根据平均发电成本最小的机组优先满出力为原则,确定机组出力的初值;
根据所述机组出力的初值,计算所述发电成本最小化数学模型得的解,并根据所述解
制定经济调度优化方案。
2.根据权利要求1所述的用于含风电场的经济调度的数据处理方法,其特征在于,
所述步骤获取火电机组自身的禁运域之后,所述步骤构建实际运行的约束条件之前还
包括:
利用互补理论对禁运域约束条件进行等效转换,将其表示成便于数学求解的数学表达
式。
3.根据权利要求2所述的用于含风电场的经济调度的数据处理方法,其特征在于,
所述步骤利用互补理论对禁运域约束条件进行等效转换,将其表示成便于数学求解的
数学表达式包括:
确定禁运域约束条件的形式;
根据所述禁运域约束条件的形式,确定最优可行区间所在的位置;
根据所述最优可行区间所在的位置,确定最优可行区间的数学表达式。
4.根据权利要求1所述的用于含风电场的经济调度的数据处理方法,其特征在于,
所述步骤获取参与经济调度的火电机组数量、调度周期、调度周期内各个时段的预测
负荷、调度周期内各个时段的旋转备用负荷和火电机组自身的禁运域,构建实际运行约束
条件,所述步骤对所述目标函数和所述约束条件进行整理得到发电成本最小化数学模型之
前还包括:
利用区间数优化方法,将所述约束条件转换为确定性的约束条件。
5.根据权利要求4所述的用于含风电场的经济调度的数据处理方法,其特征在于,
所述步骤利用区间数优化方法,将所述约束条件转换为确定性的约束条件包括:
将区间数线性优化问题转换成两目标线性规划问题,得到所述线性优化问题的有效
解;
根据所述有效解,将所述区间数线性优化问题的约束条件转换为一般的实数约束条
件。
6.根据权利要求1所述的用于含风电场的经济调度的数据处理方法,其特征在于,
所述步骤根据平均发电成本最小的机组优先满出力为原则,确定机组出力的初值包
括:
计算每台机组满出力状态的平均发电成本;
根据所述平均发电成本,对所述机组进行排序;
根据排序结果,安排平均发电成本低的机组满出力,确定机组出力的初值。
7.一种用于含风电场的经济调度的数据处理装置包括:
第一获取单元,用于获取参与经济调度的火电机组数量、调度周期、调度周期内各个时
段的预测负荷、调度周期内各个时段的旋转备用负荷和火电机组自身的禁运域;
第一构建单元,用于通过所述参与经济调度的火电机组数量、调度周期、调度周期内各
个时段的预测负荷、调度周期内各个时段的旋转备用负荷和火电机组自身的禁运域构建实
际运行约束条件;
第二获取单元,用于获取每台火电机组的参数;
第二构建单元,用于通过每台火电机组的参数,构建目标函数;
整理单元,用于对所述目标函数和所述约束条件进行整理得到发电成本最小化数学模
型;
确定单元,用于根据平均发电成本最小的机组优先满出力为原则,确定机组出力的初
值;
计算单元,用于根据所述机组出力的初值,计算所述发电成本最小化数学模型中用于
制定经济调度优化方案的解。
8.根据权利要求7所述的用于含风电场的经济调度的数据处理装置,其特征在于,
所述装置还包括:
第一转换单元,用于利用互补理论对禁运域约束条件进行等效转换,将其表示成便于
数学求解的数学表达式。
9.根据权利要求7所述的用于含风电场的经济调度的数据处理装置,其特征在于,
所述装置还包括:
第二转换单元,用于利用区间数优化方法,将所述约束条件转换为确定性的约束条件。
10.根据权利要求7所述的用于含风电场的经济调度的数据处理装置,其特征在于,
所述确定单元包括:
计算子单元,用于计算每台机组满出力状态的平均发电成本;
排序子单元,用于根据所述平均发电成本,对所述机组进行排序;
第四确定子单元,用于根据排序结果,安排平均发电成本低的机组满出力,确定机组出
力的初值。

说明书

一种用于含风电场的经济调度的数据处理方法及装置

技术领域

本发明涉及电力系统优化领域,尤其涉及一种用于含风电场的经济调度的数据处
理方法及装置。

背景技术

在电力系统研究领域,对含风电场经济调度的研究一直是热点与难点。电力系统
经济调度优化问题旨在电力系统调度周期内,在满足各种实际运行约束条件的前提下,以
电力系统运行总成本最小为目标,通过合理地安排系统中每台火电机组的出力,确定最优
的机组出力方案。研究含风电场经济调度优化问题,能够对煤炭资源进行结构性的优化,合
理利用风电这一可再生能源的同时,也将风电并网所造成的危害降低,有利于节能减排措
施的实施。

现有的优化计算方法主要有:穷举法、动态规划法、拉格朗日松弛法,分支定界法、
混合整数规划法等传统方法以及各种基于人工智能的启发式算法,常见的人工智能算法有
混沌粒子群算法、遗传算法、神经网络算法等。

但是在现有众多的优化算法中,传统的模型大多数的模型对风电的处理都采用隶
属度函数和模糊数这两种方法进行处理无法真实的反映风电的出力情况,而智能优化算法
又存在收敛精度差、运行太阳城集团长等缺点,目前亟待提供一种算法既能全面的考虑实际的运
行约束条件,又能快速、准确的得到优化结果。

发明内容

本发明提供了一种用于含风电场的经济调度的数据处理方法及装置,能够合理考
虑火电机组的机械限制,通过设置了禁运域,来快速、准确的得到优化结果。

本发明提供的一种用于含风电场的经济调度的数据处理方法,包括:

获取参与经济调度的火电机组数量、调度周期、调度周期内各个时段的预测负荷、
调度周期内各个时段的旋转备用负荷和火电机组自身的禁运域,构建实际运行的约束条
件;

获取每台火电机组的参数,构建目标函数;

对目标函数和约束条件进行整理,得到发电成本最小化数学模型;

根据平均发电成本最小的机组优先满出力为原则,确定机组出力的初值;

根据机组出力的初值,计算发电成本最小化数学模型得的解,并根据该解制定经
济调度优化方案。

可选的,

步骤获取火电机组自身的禁运域之后,步骤构建实际运行的约束条件之前还包
括:

利用互补理论对禁运域约束条件进行等效转换,将其表示成便于数学求解的数学
表达式。

可选的,

步骤利用互补理论对禁运域约束条件进行等效转换,将其表示成便于数学求解的
数学表达式包括:

确定禁运域约束条件的形式;

根据禁运域约束条件的形式,确定最优可行区间所在的位置;

根据最优可行区间所在的位置,确定最优可行区间的数学表达式。

可选的,

步骤获取参与经济调度的火电机组数量、调度周期、调度周期内各个时段的预测
负荷、调度周期内各个时段的旋转备用负荷和火电机组自身的禁运域,构建实际运行约束
条件,步骤对目标函数和约束条件进行整理得到发电成本最小化数学模型之前还包括:

利用区间数优化方法,将约束条件转换为确定性的约束条件。

可选的,

步骤利用区间数优化方法,将约束条件转换为确定性的约束条件包括:

将区间数线性优化问题转换成两目标线性规划问题,得到线性优化问题的有效
解;

根据该有效解,将区间数线性优化问题的约束条件转换为一般的实数约束条件。

可选的,

步骤根据平均发电成本最小的机组优先满出力为原则,确定机组出力的初值包
括:

计算每台机组满出力状态的平均发电成本;

根据平均发电成本,对机组进行排序;

根据排序结果,安排平均发电成本低的机组满出力,确定机组出力的初值。

本发明还提供了一种用于含风电场的经济调度的数据处理装置包括:

第一获取单元,用于获取参与经济调度的火电机组数量、调度周期、调度周期内各
个时段的预测负荷、调度周期内各个时段的旋转备用负荷和火电机组自身的禁运域;

第一构建单元,用于通过参与经济调度的火电机组数量、调度周期、调度周期内各
个时段的预测负荷、调度周期内各个时段的旋转备用负荷和火电机组自身的禁运域构建实
际运行约束条件;

第二获取单元,用于获取每台火电机组的参数;

第二构建单元,用于通过每台火电机组的参数,构建目标函数;

整理单元,用于对目标函数和所述约束条件进行整理得到发电成本最小化数学模
型;

确定单元,用于根据平均发电成本最小的机组优先满出力为原则,确定机组出力
的初值;

计算单元,用于根据机组出力的初值,计算发电成本最小化数学模型中用于制定
经济调度优化方案的解。

可选的,

该装置还包括:

第一转换单元,用于利用互补理论对禁运域约束条件进行等效转换,将其表示成
便于数学求解的数学表达式。

可选的,

该装置还包括:

第二转换单元,用于利用区间数优化方法,将约束条件转换为确定性的约束条件。

可选的,

该确定单元包括:

计算子单元,用于计算每台机组满出力状态的平均发电成本;

排序子单元,用于根据该平均发电成本,对该机组进行排序;

第四确定子单元,用于根据排序结果,安排平均发电成本低的机组满出力,确定机
组出力的初值。

从以上技术方案可以看出,本发明实施例具体有以下优点:

本发明实施例中,系统首先获取参与经济调度的火电机组数量、调度周期、调度周
期内各个时段的预测负荷、调度周期内各个时段的旋转备用负荷和火电机组自身的禁运
域,构建实际运行的约束条件;再获取每台火电机组的参数,构建目标函数;接着,对目标函
数和约束条件进行整理,得到发电成本最小化数学模型;然后,根据平均发电成本最小的机
组优先满出力为原则,确定机组出力的初值;最后,根据机组出力的初值,计算发电成本最
小化数学模型得的解,并根据该解制定经济调度优化方案。本发明技术方案不仅包含实际
运行约束条件与禁运域约束条件,更全面地包含了每台火电机组的参数。其中,所述每个发
电机机组的参数中,包含了机组的爬坡速率约束、禁运域约束,而这些约束条件在传统的经
济调度优化方法中常常是被忽略的。因此本发明提出的数据处理方法相较于传统优化方
法,更加全面地考虑了各种约束条件。并合理考虑火电机组的机械限制,通过设置了禁运
域,来快速、准确的得到优化结果。

附图说明

图1为本发明实施例中,用于含风电场的经济调度的数据处理方法实施例流程图;

图2为本发明实施例中,用于含风电场的经济调度的数据处理装置第一实施例结
构示意图;

图3为本发明实施例中,用于含风电场的经济调度的数据处理装置第二实施例结
构示意图;

图4为本发明实施例中,用于含风电场的经济调度的数据处理装置第三实施例结
构示意图;

图5为本发明实施例中,用于含风电场的经济调度的数据处理装置第四实施例结
构示意图。

具体实施方式

本发明提供了一种用于含风电场的经济调度的数据处理方法及装置,能够合理考
虑火电机组的机械限制,通过设置了禁运域,来快速、准确的得到优化结果。

下面请参阅图1,本发明提供的一种用于含风电场的经济调度的数据处理方法实
施例包括:

101、获取参与经济调度的火电机组数量、调度周期、调度周期内各个时段的预测
负荷、调度周期内各个时段的旋转备用负荷和火电机组自身的禁运域,构建实际运行的约
束条件;

102、获取每台火电机组的参数,构建目标函数;

在本实施例中,上述约束条件和目标函数包括:机组发电成本函数、机组特性参
数、机组爬坡速率、机组最大/最小出力机组旋转备用;

其中,所述的机组发电成本函数为:

<mrow> <mi>min</mi> <munderover> <mo>&Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>N</mi> <mi>g</mi> </msub> </munderover> <munderover> <mo>&Sigma;</mo> <mrow> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>T</mi> </munderover> <mrow> <mo>(</mo> <msub> <mi>a</mi> <mi>i</mi> </msub> <msubsup> <mi>P</mi> <mrow> <mi>g</mi> <mo>,</mo> <mi>i</mi> </mrow> <mn>2</mn> </msubsup> <mo>+</mo> <msub> <mi>b</mi> <mi>i</mi> </msub> <msub> <mi>P</mi> <mrow> <mi>g</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>c</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>,</mo> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>...</mn> <mo>,</mo> <msub> <mi>N</mi> <mi>g</mi> </msub> <mo>;</mo> <mi>t</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>...</mn> <mo>,</mo> <mi>T</mi> </mrow>

式中,ai、bi、ci分别是第i台火电机组的参数;Pg,i为火电机组i的有功出力;

所述机组爬坡速率为:Pg,i,t-Pg,i,(t-1),i=1,2,...,Ng;t=1,2,...,T

其中,Pg,i,t表示机组i在t时段的有功出力;

所述机组最大出力为:Pimax,机组最小出力为:Pimin;

103、对目标函数和约束条件进行整理,得到发电成本最小化数学模型;

在本实施例中,构建的发电成本最小化数学模型包括:

<mrow> <mi>min</mi> <munderover> <mo>&Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>N</mi> <mi>g</mi> </msub> </munderover> <mrow> <mo>(</mo> <msub> <mi>a</mi> <mi>i</mi> </msub> <msubsup> <mi>P</mi> <mrow> <mi>g</mi> <mo>,</mo> <mi>i</mi> </mrow> <mn>2</mn> </msubsup> <mo>+</mo> <msub> <mi>b</mi> <mi>i</mi> </msub> <msub> <mi>P</mi> <mrow> <mi>g</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>c</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mrow>

其约束条件为:

(1)功率平衡约束:

<mrow> <munderover> <mo>&Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>N</mi> <mi>g</mi> </msub> </munderover> <msub> <mi>P</mi> <mrow> <mi>g</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>+</mo> <munderover> <mo>&Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>N</mi> <mi>w</mi> </msub> </munderover> <mo>&lsqb;</mo> <msubsup> <mi>P</mi> <mrow> <mi>w</mi> <mo>,</mo> <mi>j</mi> </mrow> <mo>-</mo> </msubsup> <mo>,</mo> <msubsup> <mi>P</mi> <mrow> <mi>w</mi> <mo>,</mo> <mi>j</mi> </mrow> <mo>+</mo> </msubsup> <mo>&rsqb;</mo> <mo>+</mo> <munderover> <mo>&Sigma;</mo> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>N</mi> <mi>d</mi> </msub> </munderover> <msub> <mi>P</mi> <mrow> <mi>d</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> </mrow>

(2)火电机组出力约束:

<mrow> <msubsup> <mi>P</mi> <mrow> <mi>g</mi> <mo>,</mo> <mi>i</mi> </mrow> <mi>min</mi> </msubsup> <mo>&le;</mo> <msub> <mi>P</mi> <mrow> <mi>g</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>&le;</mo> <msubsup> <mi>P</mi> <mrow> <mi>g</mi> <mo>,</mo> <mi>i</mi> </mrow> <mi>max</mi> </msubsup> </mrow>

(3)旋转备用容量约束:

<mrow> <munderover> <mo>&Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>N</mi> <mi>g</mi> </msub> </munderover> <msubsup> <mi>P</mi> <mrow> <mi>g</mi> <mo>,</mo> <mi>i</mi> </mrow> <mi>max</mi> </msubsup> <mo>+</mo> <munderover> <mo>&Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>N</mi> <mi>w</mi> </msub> </munderover> <mo>&lsqb;</mo> <msubsup> <mi>P</mi> <mrow> <mi>w</mi> <mo>,</mo> <mi>j</mi> </mrow> <mo>-</mo> </msubsup> <mo>,</mo> <msubsup> <mi>P</mi> <mrow> <mi>w</mi> <mo>,</mo> <mi>j</mi> </mrow> <mo>+</mo> </msubsup> <mo>&rsqb;</mo> <mo>&GreaterEqual;</mo> <munderover> <mo>&Sigma;</mo> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>N</mi> <mi>d</mi> </msub> </munderover> <msub> <mi>P</mi> <mrow> <mi>d</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <mi>L</mi> <mi>%</mi> <mo>)</mo> </mrow> </mrow>

式中,L%表示系统的旋转备用率。

(4)爬坡约束:

-RDi≤Pg,i,t-Pg,i,(t-1)≤RUi

式中,RUi、RDi分别表示机组的最大向上、向下爬坡限制。

(5)支路潮流约束:

<mrow> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>i</mi> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> <mo>&le;</mo> <msub> <mi>P</mi> <mrow> <mi>g</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>+</mo> <mo>&lsqb;</mo> <msubsup> <mi>P</mi> <mrow> <mi>w</mi> <mo>,</mo> <mi>j</mi> </mrow> <mo>-</mo> </msubsup> <mo>,</mo> <msubsup> <mi>P</mi> <mrow> <mi>w</mi> <mo>,</mo> <mi>j</mi> </mrow> <mo>+</mo> </msubsup> <mo>&rsqb;</mo> <mo>&le;</mo> <msub> <mi>P</mi> <mrow> <mi>i</mi> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> </mrow>

式中:Pimax为支路允许流过的最大功率限制。

(6)禁止区间约束:

<mrow> <msub> <mi>P</mi> <mrow> <mi>g</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>&Element;</mo> <mo>&lsqb;</mo> <msubsup> <mi>P</mi> <mrow> <mi>g</mi> <mo>,</mo> <mi>i</mi> <mo>,</mo> <mn>1</mn> </mrow> <mi>min</mi> </msubsup> <mo>,</mo> <msubsup> <mi>P</mi> <mrow> <mi>g</mi> <mo>,</mo> <mi>i</mi> <mo>,</mo> <mn>1</mn> </mrow> <mi>max</mi> </msubsup> <mo>&rsqb;</mo> <mo>,</mo> <mi>o</mi> <mi>r</mi> <mo>,</mo> <mn>...</mn> <mo>,</mo> <mo>&lsqb;</mo> <msubsup> <mi>P</mi> <mrow> <mi>g</mi> <mo>,</mo> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> <mi>min</mi> </msubsup> <mo>,</mo> <msubsup> <mi>P</mi> <mrow> <mi>g</mi> <mo>,</mo> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> <mi>max</mi> </msubsup> <mo>&rsqb;</mo> <mo>,</mo> <mi>o</mi> <mi>r</mi> <mo>,</mo> <mn>...</mn> <mo>,</mo> <mo>&lsqb;</mo> <msubsup> <mi>P</mi> <mrow> <mi>g</mi> <mo>,</mo> <mi>i</mi> <mo>,</mo> <mi>n</mi> </mrow> <mi>min</mi> </msubsup> <mo>,</mo> <msubsup> <mi>P</mi> <mrow> <mi>g</mi> <mo>,</mo> <mi>i</mi> <mo>,</mo> <mi>n</mi> </mrow> <mi>max</mi> </msubsup> <mo>&rsqb;</mo> </mrow>

104、根据平均发电成本最小的机组优先满出力为原则,确定机组出力的初值;

在本实施例中,火电机组启动时,还没有进入优化阶段,为了使经济调度出力的煤
耗值最小,在满足用电负荷的前提下,优先安排平均发电成本小的机组满出力,可以保证在
没有进行优化的前提下使整体运行成本最小。

105、根据机组出力的初值,计算发电成本最小化数学模型得的解,并根据该解制
定经济调度优化方案。

本实施例中,利用原对偶内点法对所述数学模型进行求解,原对偶内点法是成熟
的非线性规划问题求解方法,由于其求解速度较快、精度较高,是业内常用的非线性规划问
题求解方法。本发明只提出利用原对偶内点法作为计算工具进行模型求解,并没有对原对
偶内点法进行改造优化。此处对原对偶内点法进行简要介绍:

原对偶内点法所适用的一般非线性规划模型为:

<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mi>min</mi> <mi>F</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>s</mi> <mo>.</mo> <mi>t</mi> <mo>.</mo> <mi>g</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <munder> <mi>h</mi> <mo>&OverBar;</mo> </munder> <mo>&le;</mo> <mi>h</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>&le;</mo> <mover> <mi>h</mi> <mo>&OverBar;</mo> </mover> </mrow> </mtd> </mtr> </mtable> </mfenced>

式中,g(x)为等式约束,h(x)为不等式约束,h不等式约束的下限,为不等式约束
的上限。

原对偶内点法的计算步骤概括如下:

1)根据各个机组出力的初值,计算当前目标函数的最优解;

2)计算补偿间隙并判断收敛条件;

3)计算扰动因子;

4)求解修正方程式,得到修正方向;

5)确定原变量和对偶变量的步长;

6)修正原变量和对偶变量,转到步骤2)。

区间数优化理论是目前较为常用的处理不确定量的方法,接下来将详细介绍区间
数优化理论具体的实施方法。

工程项目中常见的区间数线性优化问题可以描述成如下形式:

<mrow> <mi>min</mi> <mi>F</mi> <mo>=</mo> <munderover> <mo>&Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>C</mi> <mi>i</mi> </msub> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>...</mn> <mo>,</mo> <mi>n</mi> </mrow>

<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <mi>s</mi> <mo>.</mo> <mi>t</mi> <mo>.</mo> </mrow> </mtd> <mtd> <mrow> <munderover> <mo>&Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>m</mi> </munderover> <msub> <mi>A</mi> <mi>j</mi> </msub> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>&le;</mo> <msub> <mi>B</mi> <mi>j</mi> </msub> <mo>,</mo> <mi>j</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>...</mn> <mo>,</mo> <mi>m</mi> </mrow> </mtd> </mtr> </mtable> </mfenced>

<mrow> <munderover> <mo>&Sigma;</mo> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>l</mi> </munderover> <msub> <mi>A</mi> <mi>k</mi> </msub> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>=</mo> <msub> <mi>B</mi> <mi>k</mi> </msub> <mo>,</mo> <mi>k</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>...</mn> <mo>,</mo> <mi>l</mi> </mrow>

<mrow> <msub> <mi>C</mi> <mi>i</mi> </msub> <mo>&Element;</mo> <mo>&lsqb;</mo> <msup> <mi>c</mi> <mi>L</mi> </msup> <mo>,</mo> <msup> <mi>c</mi> <mi>R</mi> </msup> <mo>&rsqb;</mo> <mo>,</mo> <msub> <mi>A</mi> <mi>j</mi> </msub> <mo>&Element;</mo> <mo>&lsqb;</mo> <msubsup> <mi>a</mi> <mi>j</mi> <mi>L</mi> </msubsup> <mo>,</mo> <msubsup> <mi>a</mi> <mi>j</mi> <mi>R</mi> </msubsup> <mo>&rsqb;</mo> <mo>,</mo> <msub> <mi>A</mi> <mi>k</mi> </msub> <mo>=</mo> <mo>&lsqb;</mo> <msubsup> <mi>a</mi> <mi>k</mi> <mi>L</mi> </msubsup> <mo>,</mo> <msubsup> <mi>a</mi> <mi>k</mi> <mi>R</mi> </msubsup> <mo>&rsqb;</mo> </mrow>

区间数线性规划解的形式与多目标规划相同,因此称之为有效解。在可行域确定
的情况下,可将上述问题转换成两目标线性规划问题:

<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>minF</mi> <mn>1</mn> </msub> <mo>=</mo> <munderover> <mo>&Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msup> <mi>c</mi> <mi>L</mi> </msup> <msub> <mi>x</mi> <mi>i</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>minF</mi> <mn>2</mn> </msub> <mo>=</mo> <munderover> <mo>&Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msup> <mi>c</mi> <mi>R</mi> </msup> <msub> <mi>x</mi> <mi>i</mi> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced>

该线性规划问题的每一个Pareto最优解都是式(13)的有效解,将两目标线性规划
问题整合成一个目标函数,则有:

<mrow> <msub> <mi>minF</mi> <mn>3</mn> </msub> <mo>=</mo> <munderover> <mo>&Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <mo>&lsqb;</mo> <msup> <mi>c</mi> <mi>L</mi> </msup> <mo>+</mo> <mi>&alpha;</mi> <mrow> <mo>(</mo> <msup> <mi>c</mi> <mi>R</mi> </msup> <mo>-</mo> <msup> <mi>c</mi> <mi>L</mi> </msup> <mo>)</mo> </mrow> <mo>&rsqb;</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>&alpha;</mi> <mo>&Element;</mo> <mo>&lsqb;</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>&rsqb;</mo> </mrow>

定义1如式(15)所示的线性规划的解称为式(13)的优化水平解α。

定义2对式(13)的任一解,称为该解对约束条件的满足水平。
在一定的约束满足水平下,区间数约束条件可转换为一般的实数约束条件,如下式所示。

<mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>&lambda;</mi> <mo>)</mo> <munderover> <mo>&Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>m</mi> </munderover> <msup> <mi>a</mi> <mi>L</mi> </msup> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>+</mo> <mi>&lambda;</mi> <munderover> <mo>&Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>m</mi> </munderover> <msup> <mi>a</mi> <mi>R</mi> </msup> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>&le;</mo> <msub> <mi>B</mi> <mi>j</mi> </msub> <mo>,</mo> <mi>&lambda;</mi> <mo>&Element;</mo> <mo>&lsqb;</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>&rsqb;</mo> </mrow>

需要说明的是,在实际应用中,由于参与经济调度的机组数量多,且通常是动态经
济调度,各种实际运行约束条件和机组参数也有很多,机组调度周期较长,且原对偶内点法
的计算过程需要多次的迭代才能得出理想的组合优化方案,计算量非常大。因此在实际应
用中,需要依靠仿真计算工具如Matlab进行计算。本发明也是采用在Matlab中编写程序进
行求解的方式得到优化结果。

为了更好地说明本发明提出的数据处理方法的有益效果,下面举例使用经济调度
优化问题研究中广泛应用的算例进行验证。

假设一共有10台机组,进行24小时的经济调度优化,10台机组的各个参数如表1所
示,预测未来24小时的预测负荷如表2所示,旋转备用为用电负荷的5%,在任意时刻,系统
开机机组输出总的有功功率必须和该时刻的用电负荷值相等,即开机机组的最大输出功率
的总和不得小于用电负荷和旋转备用的总和。

表1



表2



由上述可知,该机组组合优化问题的机组实际运行约束条件和各机组参数均已
知,应用本发明提出的数据处理方法,可以进行经济调度优化方案求解。

利用Matlab工具按照本发明提出的数据处理方法编写程序进行求解,得出如表3
的结果:

表3





由表3可知,每一时段的经济调度结果都满足用电负荷要求,并且容量较大的机组
承担了相对较多的负荷,提高了高能效大机组的运行效率,尽可能使机组运行在最佳的工
作点,有效地降低了系统的运行成本,经过计算,采用本发明计算的经济调度方式,24小时
运行的总的发电成本(不计及风电)为1001400元,由于合理的考虑了风电的不确定性,使得
系统的实际运行成本更小,满足水平λ与发电成本、备用成本的关系见表4,由表可知,随着
满足水平λ的增加,系统的发电成本会随之减少,从而实现系统运行的经济性,其结果更加
符合实际的工程要求。

表4



本发明实施例中,系统首先获取参与经济调度的火电机组数量、调度周期、调度周
期内各个时段的预测负荷、调度周期内各个时段的旋转备用负荷和火电机组自身的禁运
域,构建实际运行的约束条件;再获取每台火电机组的参数,构建目标函数;接着,对目标函
数和约束条件进行整理,得到发电成本最小化数学模型;然后,根据平均发电成本最小的机
组优先满出力为原则,确定机组出力的初值;最后,根据机组出力的初值,计算发电成本最
小化数学模型得的解,并根据该解制定经济调度优化方案。本发明技术方案不仅包含实际
运行约束条件与禁运域约束条件,更全面地包含了每台火电机组的参数。其中,所述每个发
电机机组的参数中,包含了机组的爬坡速率约束、禁运域约束,而这些约束条件在传统的经
济调度优化方法中常常是被忽略的。因此本发明根据参与经济调度的火电机组的参数和实
际运行约束条件,建立包含机组运行状态约束条件的最小发电成本数学模型,相对于传统
优化方法,更加全面地考虑了发电机机组的参数和实际运行约束条件,同时还考虑了机组
的禁运域约束。然后利用互补优化理论将机组禁运域约束条件转换为可求解的数学表达
式,再利用区间数优化方法,将包含风电区间的目标函数和约束条件进行转换,经过转换后
的模型为以确定性实数的数学模型,降低了求解难度。最后利用原对偶内点法对所述确定
性数学模型进行求解,原对偶内点法是成熟的求解非线性规划问题的方法,经过很少次数
的迭代就可以得出经济调度优化方案,有效地提高了经济调度优化方案求解速度及求解精
度。

本发明中用于含风电场的经济调度的数据处理方法实施例进一步包括:

步骤101中,获取火电机组自身的禁运域之后,步骤构建实际运行的约束条件之前
还包括:

利用互补理论对禁运域约束条件进行等效转换,将其表示成便于数学求解的数学
表达式。

上述利用互补理论对禁运域约束条件进行等效转换,将其表示成便于数学求解的
数学表达式包括:

确定禁运域约束条件的形式;

根据禁运域约束条件的形式,确定最优可行区间所在的位置;

根据最优可行区间所在的位置,确定最优可行区间的数学表达式。

本发明中用于含风电场的经济调度的数据处理方法的上述实施例进一步包括:

步骤101中获取参与经济调度的火电机组数量、调度周期、调度周期内各个时段的
预测负荷、调度周期内各个时段的旋转备用负荷和火电机组自身的禁运域,构建实际运行
约束条件之后,步骤对目标函数和约束条件进行整理得到发电成本最小化数学模型之前还
包括:

利用区间数优化方法,将约束条件转换为确定性的约束条件。

将约束条件转换为确定性的约束条件包括:

将区间数线性优化问题转换成两目标线性规划问题,得到线性优化问题的有效
解;

根据该有效解,将区间数线性优化问题的约束条件转换为一般的实数约束条件。

本实施例中,需要说明的是,风电不确定性是目前较难处理的问题,采用区间数优
化方法,将包含不确定量的目标函数和约束条件进行转换,在恰当反映风电特征的前提下,
又保证模型求解的精确度。

本发明中用于含风电场的经济调度的数据处理方法的上述实施例进一步包括:

步骤104根据平均发电成本最小的机组优先满出力为原则,确定机组出力的初值
包括:

(1)计算每台机组满出力状态的平均发电成本;

(2)根据平均发电成本,对机组进行排序;

(3)根据排序结果,安排平均发电成本低的机组满出力,确定机组出力的初值。

下面请参考图2,本发明还提供了一种用于含风电场的经济调度的数据处理装置
第一实施例包括:

第一获取单元201,用于获取参与经济调度的火电机组数量、调度周期、调度周期
内各个时段的预测负荷、调度周期内各个时段的旋转备用负荷和火电机组自身的禁运域;

第一构建单元202,用于通过参与经济调度的火电机组数量、调度周期、调度周期
内各个时段的预测负荷、调度周期内各个时段的旋转备用负荷和火电机组自身的禁运域构
建实际运行约束条件;

第二获取单元203,用于获取每台火电机组的参数;

第二构建单元204,用于通过每台火电机组的参数,构建目标函数;

整理单元205,用于对目标函数和所述约束条件进行整理得到发电成本最小化数
学模型;

确定单元206,用于根据平均发电成本最小的机组优先满出力为原则,确定机组出
力的初值;

计算单元207,用于根据机组出力的初值,计算发电成本最小化数学模型中用于制
定经济调度优化方案的解。

本实施例中,首先,第一获取单元201获取参与经济调度的火电机组数量、调度周
期、调度周期内各个时段的预测负荷、调度周期内各个时段的旋转备用负荷和火电机组自
身的禁运域,第一构建单元202构建实际运行的约束条件;再由第二获取单元203获取每台
火电机组的参数,第二构建单元204构建目标函数;接着,整理单元205对目标函数和约束条
件进行整理,得到发电成本最小化数学模型;然后,确定单元206根据平均发电成本最小的
机组优先满出力为原则,确定机组出力的初值;最后,计算单元207根据机组出力的初值,计
算发电成本最小化数学模型得的解,并根据该解制定经济调度优化方案。本发明技术方案
不仅包含实际运行约束条件与禁运域约束条件,更全面地包含了每台火电机组的参数。其
中,所述每个发电机机组的参数中,包含了机组的爬坡速率约束、禁运域约束,而这些约束
条件在传统的经济调度优化方法中常常是被忽略的。因此本发明根据参与经济调度的火电
机组的参数和实际运行约束条件,建立包含机组运行状态约束条件的最小发电成本数学模
型,相对于传统优化方法,更加全面地考虑了发电机机组的参数和实际运行约束条件,同时
还考虑了机组的禁运域约束。然后利用互补优化理论将机组禁运域约束条件转换为可求解
的数学表达式,再利用区间数优化方法,将包含风电区间的目标函数和约束条件进行转换,
经过转换后的模型为以确定性实数的数学模型,降低了求解难度。最后利用原对偶内点法
对所述确定性数学模型进行求解,原对偶内点法是成熟的求解非线性规划问题的方法,经
过很少次数的迭代就可以得出经济调度优化方案,有效地提高了经济调度优化方案求解速
度及求解精度。

下面请参考图3,本发明还提供了一种用于含风电场的经济调度的数据处理装置
第二实施例包括:

第一获取单元301,用于获取参与经济调度的火电机组数量、调度周期、调度周期
内各个时段的预测负荷、调度周期内各个时段的旋转备用负荷和火电机组自身的禁运域;

第一转换单元302,用于利用互补理论对禁运域约束条件进行等效转换,将其表示
成便于数学求解的数学表达式。

第一构建单元303,用于通过参与经济调度的火电机组数量、调度周期、调度周期
内各个时段的预测负荷、调度周期内各个时段的旋转备用负荷和火电机组自身的禁运域构
建实际运行约束条件;

第二获取单元304,用于获取每台火电机组的参数;

第二构建单元305,用于通过每台火电机组的参数,构建目标函数;

整理单元306,用于对目标函数和所述约束条件进行整理得到发电成本最小化数
学模型;

确定单元307,用于根据平均发电成本最小的机组优先满出力为原则,确定机组出
力的初值;

计算单元308,用于根据机组出力的初值,计算发电成本最小化数学模型中用于制
定经济调度优化方案的解。

本实施例中,区别于上述实施例的是,第一获取单元301获取火电机组自身的禁运
域之后,第一构建单元303构建实际运行的约束条件之前,第一转换单元302利用互补理论
对禁运域约束条件进行等效转换,将其表示成便于数学求解的数学表达式。

该第一转换单元302包括

第一确定子单元3021,用于确定禁运域约束条件的形式;

第二确定子单元3022,用于根据禁运域约束条件的形式,确定最优可行区间所在
的位置;

第三确定子单元3023,用于根据最优可行区间所在的位置,确定最优可行区间的
数学表达式。

下面请参考图4,本发明还提供了一种用于含风电场的经济调度的数据处理装置
第三实施例包括:

第一获取单元401,用于获取参与经济调度的火电机组数量、调度周期、调度周期
内各个时段的预测负荷、调度周期内各个时段的旋转备用负荷和火电机组自身的禁运域;

第二转换单元402,用于利用区间数优化方法,将约束条件转换为确定性的约束条
件。

第一构建单元403,用于通过参与经济调度的火电机组数量、调度周期、调度周期
内各个时段的预测负荷、调度周期内各个时段的旋转备用负荷和火电机组自身的禁运域构
建实际运行约束条件;

第二获取单元404,用于获取每台火电机组的参数;

第二构建单元405,用于通过每台火电机组的参数,构建目标函数;

整理单元406,用于对目标函数和所述约束条件进行整理得到发电成本最小化数
学模型;

确定单元407,用于根据平均发电成本最小的机组优先满出力为原则,确定机组出
力的初值;

计算单元408,用于根据机组出力的初值,计算发电成本最小化数学模型中用于制
定经济调度优化方案的解。

本实施例中,区别于上述实施例的是,第一获取单元401获取火电机组自身的禁运
域之后,第一构建单元403构建实际运行的约束条件之前,第二转换单元402利用区间数优
化方法,将约束条件转换为确定性的约束条件。

该第二转换单元402包括:

第一转换子单元4021,用于将区间数线性优化问题转换成两目标线性规划问题,
得到线性优化问题的有效解;

第二转换子单元4022,用于根据有效解,将区间数线性优化问题的约束条件转换
为一般的实数约束条件。

下面请参考图5,本发明还提供了一种用于含风电场的经济调度的数据处理装置
第四实施例包括:

第一获取单元501,用于获取参与经济调度的火电机组数量、调度周期、调度周期
内各个时段的预测负荷、调度周期内各个时段的旋转备用负荷和火电机组自身的禁运域;

第一构建单元502,用于通过参与经济调度的火电机组数量、调度周期、调度周期
内各个时段的预测负荷、调度周期内各个时段的旋转备用负荷和火电机组自身的禁运域构
建实际运行约束条件;

第二获取单元503,用于获取每台火电机组的参数;

第二构建单元504,用于通过每台火电机组的参数,构建目标函数;

整理单元505,用于对目标函数和所述约束条件进行整理得到发电成本最小化数
学模型;

需要说明的是,确定单元506以上的单元与前面任意一个实施例限定的均相同,在
此不做赘述。上述实施例与第一实施例比较为例进行说明。

确定单元506用于根据平均发电成本最小的机组优先满出力为原则,确定机组出
力的初值;

该确定单元506包括:

计算子单元5061,用于计算每台机组满出力状态的平均发电成本;

排序子单元5062,用于根据该平均发电成本,对该机组进行排序;

第四确定子单元5063,用于根据排序结果,安排平均发电成本低的机组满出力,确
定机组出力的初值。

计算单元507,用于根据机组出力的初值,计算发电成本最小化数学模型中用于制
定经济调度优化方案的解。

所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,
装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。

在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以
通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的
划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件
可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不处理。另一点,所显示或
讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦
合或通信连接,可以是电性,机械或其它的形式。

所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显
示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个
网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目
的。

另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以
是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单
元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。

所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用
时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上
或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式
体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机
设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全
部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-
OnlyMemory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存
储程序代码的介质。

以上所述,以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前
述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前
述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些
修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

关 键 词:
一种 用于 电场 经济 调度 数据处理 方法 装置
  专利查询网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
太阳城集团本文
本文标题:一种用于含风电场的经济调度的数据处理方法及装置.pdf
链接地址:http://zh228.com/p-6100807.html
太阳城集团我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服客服 - 联系我们

copyright@ 2017-2018 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备17046363号-1 
 


收起
展开
葡京赌场|welcome document.write ('');