太阳城集团

  • / 11
  • 下载费用:30 金币  

一种杂波环境下的认知雷达目标跟踪方法.pdf

摘要
申请专利号:

CN201610513892.4

申请日:

2016.07.01

公开号:

CN106257302A

公开日:

2016.12.28

当前法律状态:

实审

有效性:

审中

法律详情: 实质审查的生效IPC(主分类):G01S 7/41申请日:20160701|||公开
IPC分类号: G01S7/41; G01S13/66 主分类号: G01S7/41
申请人: 电子科技大学
发明人: 于雪莲; 郝英杰; 曲学超; 常俊杰; 周云
地址: 611731 四川省成都市高新西区西源大道2006号
优先权:
专利代理机构: 四川君士达律师事务所 51216 代理人: 芶忠义
PDF完整版下载: PDF下载
法律状态
申请(专利)号:

CN201610513892.4

授权太阳城集团号:

|||

法律状态太阳城集团日:

2017.01.25|||2016.12.28

法律状态类型:

实质审查的生效|||公开

摘要

本发明公开了一种杂波环境下的认知雷达目标跟踪方法,获取当前时刻所有量测值并计算落入相关波门内的量测值;计算落入相关波门内的每个量测值来自目标的概率;计算当前时刻的等效量测值;将其作为感知存储器的输入,输出得到当前时刻的系统方程参数;根据系统方程参数和等效量测值,进行状态和量测预测,得到状态预测协方差;将其作为执_行存储器的输入,输出得到当前时刻的发射波形参数集;计算每种波形参数下的新息协方差和状态误差协方差;进行最优波形参数选择;根据最优波形参数计算当前时刻的新息协方差、状态误差协方差及状态估计值。本发明解决了现有认知雷达目标跟踪技术在杂波环境下无法正常运行的问题,并可提高杂波环境下的跟踪性能。

权利要求书

1.一种杂波环境下的认知雷达目标跟踪方法,其特征在于,该方法包括以下步骤:
步骤S1:获取当前时刻的所有量测值,并计算落入相关波门内的量测值;
步骤S2:计算落入相关波门内的每个量测值来自目标的概率;
步骤S3:根据落入相关波门内的每个量测值及其来自目标的概率,计算当前时刻的等
效量测值;
步骤S4:将等效测量值作为感知存储器的输入,输出得到当前时刻的系统方程参数;
步骤S5:根据系统方程参数和等效量测值,进行状态和量测预测,得到状态预测值、量
测预测值和状态预测协方差;
步骤S6:将获得的状态预测协方差作为执行存储器的输入,输出得到当前时刻的发射
波形参数集;
步骤S7:对于当前时刻的发射波形参数集,计算每种波形参数下的新息协方差和状态
误差协方差;
步骤S8:进行最优波形参数选择:从获得的发射波形参数集中选取最佳的发射波形参
数,使代价函数最小;
步骤S9:根据获得的最优波形参数,计算当前时刻的新息协方差、状态误差协方差以及
状态估计值。
2.根据权利要求1所述的杂波环境下的认知雷达目标跟踪方法,其特征在于,步骤S1
中,所述的相关波门是指以跟踪目标的量测预测值为中心,用来确定来自目标的量测值可
能出现范围的一块区域;相关波门的形状为椭圆(球),并采用以下步骤对计算落入相关波
门内的量测值进行详细描述:
若当前时刻k等于1,则将当前时刻获取的所有量测值作为落入相关波门内的量测值;
若当前时刻k大于等于2,则计算当前时刻获取的每一个量测值与量测预测值之间的相
关误差:

其中,zk,i为当前时刻获取的第i个量测值,为量测预测值,vi为zk,i与之间的相
关误差,N为当前时刻获取的量测值的总数,Sk为新息协方差矩阵,Sk1为Sk的逆矩阵;
和Sk分别由上一时刻计算的步骤S5和S9得到。当上述某个量测值的相关误差小于
等于相关门限时,则该量测值落入相关波门内;相关门限的取值决定了量测值落入相关波
门内的概率(即门概率)。
3.根据权利要求1或2所述的杂波环境下的认知雷达目标跟踪方法,其特征在于,步骤
S2中,落入相关波门内的每个量测值来自目标的概率:

其中,i为落入相关波门内的第i个量测值来自目标的概率,M为落入相关波门内的所有
量测值的总数,其中,为相关门限,nz为量测的维数,
与相关波门的面(体)积有关,PD为目标检测概率,PG为门概率。
若相关波门内没有量测,即M等于0,则跳过步骤S2,直接进入步骤S3。
4.根据权利要求3所述的杂波环境下的认知雷达目标跟踪方法,其特征在于,步骤S3
中,若M大于0,则当前时刻的等效量测为:若M等于0,则当前时刻的等效测
量值为:
其中,zk为当前时刻的等效量测值,zk,i和i分别为当前时刻落入相关波门内的第i个量
测值及其来自目标的概率,为量测预测值。
5.根据权利要求1所述的杂波环境下的认知雷达目标跟踪方法,其特征在于,步骤S4
中,所述的感知存储器由包含一个输入层、一个隐含层和一个输出层的三层感知神经网络
构成,其输入为步骤S3中获得的等效量测值zk,输出为与等效量测最匹配的系统方程参数,
具体来说,就是状态转移矩阵Fk、量测矩阵Hk和系统噪声协方差矩阵Qk。
6.根据权利要求5所述的杂波环境下的认知雷达目标跟踪方法,其特征在于,步骤S5
中,
状态预测值为:
量测预测值为:
状态预测协方差为:
其中,xk1为上一时刻的状态估计值,Ek1为上一时刻的状态误差协方差;
若当前时刻k大于等于2,则xk1和Ek1由上一时刻计算的步骤S9得到;若当前时刻k等于
1,则xk1和Ek1分别取为步骤S3中获得的等效量测值zk和步骤S4中获得的系统噪声协方差
矩阵Qk。
7.根据权利要求1所述的杂波环境下的认知雷达目标跟踪方法,其特征在于,步骤S6
中,所述的执行存储器由一个发射波形库Θ以及包含一个输入层、一个隐含层和一个输出
层的三层感知神经网络共同构成;
发射波形库Θ中包含多种事先设计好的用于探测环境和目标的发射波形参数,采用线
性调频信号作为发射波形,涉及到的波形参数包括包络持续太阳城集团和调频斜率b;三层感知神
经网络的输入为步骤S5中获得的状态预测协方差Pk|k1,输出为与之匹配的一个发射波形
参数集Θk{θk,1,…,θk,r},其中,Θk为Θ的子集,r为该子集种包含波形参数的总数量。
8.根据权利要求1所述的杂波环境下的认知雷达目标跟踪方法,其特征在于,步骤S7
中,采用以下步骤对所述的计算每种波形参数下的新息协方差和状态误差协方差进行详细
描述:
新息协方差为:
状态误差协方差为:
其中,Rk(θk,j)和分别为发射波形参数为θk,j时的量测噪声协
方差和增益;
采用线性调频信号作为发射波形,则波形参数θk,j由包络持续太阳城集团j和调频斜率bj构成,
发射波形参数为θk,j{j,bj}时的量测噪声协方差Rk(θk,j)为:

其中,为信噪比,fc为发射信号的中心频率,c为光速。
9.根据权利要求1所述的杂波环境下的认知雷达目标跟踪方法,其特征在于,步骤S8
中,所述的代价函数选择为状态误差协方差矩阵Ek(θk,j)的迹,则最优波形参数就是让Ek
(θk,j)的迹为最小的波形参数:

其中,Tr()表示矩阵的迹,为代价函数最小时对应的波形参数,即为最优波形参数;采
用线性调频信号作为发射波形,则最优波形参数为
10.根据权利要求1所述的杂波环境下的认知雷达目标跟踪方法,其特征在于,步骤S9
中当前时刻的新息协方差、状态误差协方差以及状态估计值分别为:



其中,Sk、Ek和xk分别为当前时刻最优波形参数下的新息协方差、状态误差协方差以
及状态估计值,Rk和Gk分别为下的量测噪声协方差和增益。

说明书

一种杂波环境下的认知雷达目标跟踪方法

技术领域

本发明属于雷达数据处理技术领域,具体涉及一种杂波环境下的认知雷达目标跟
踪方法。

背景技术

传统的目标跟踪雷达(Traditional Active Radar,TAR)仅发射固定波形,在接收
端采用自适应信号处理算法提高跟踪性能,而雷达的量测、分辨率等指标很大程度上取决
于发射波形参数,当环境产生变化时,仅采用自适应滤波很难达到理想的跟踪效果,因此,
自适应技术被应用到发射端,进而出现了自适应雷达(Fore-active Radar,FAR),它可以动
态地选取发射波形。与此同时,基于知识辅助的雷达信号和数据处理方法也取得了显著的
成果与进展,通过使用先验知识可进一步提高雷达的自适应能力。基于这两方面的研究成
果,加拿大学者Simon Haykin于2006年首次提出了认知雷达(Cognitive Radar, CR)的概
念。认知雷达通过环境的反射回波对环境进行感知,并利用感知的太阳城集团和其他先验知识对
接收端和发射端进行联合自适应调整,实现对目标有效而稳定的跟踪,从而大幅提高了雷
达目标跟踪性能。

目前,认知雷达研究的对象主要集中在目标跟踪这一问题上。针对认知雷达目标
跟踪这一问题,Simon Haykin等进行了一系列的研究,包括线性和非线性目标跟踪,但其所
有的研究都是在假定无杂波这一前提条件下进行的。如果目标处于杂波环境下,目标回波
和杂波回波混在一起,现有技术由于无法确定认知雷达感知存储器的输入而无法正常运
行。

发明内容

有鉴于此,本发明针对杂波环境下,目标回波和杂波回波混在一起,现有技术无法
确定认知雷达感知存储器的输入而无法正常运行的问题,提供了一种杂波环境下的认知雷
达目标跟踪方法。

为了解决上述技术问题,本发明公开了一种杂波环境下的认知雷达目标跟踪方
法,该方法包括以下步骤:

步骤S1:获取当前时刻的所有量测值,并计算落入相关波门内的量测值;

步骤S2:计算落入相关波门内的每个量测值来自目标的概率;

步骤S3:根据落入相关波门内的每个量测值及其来自目标的概率,计算当前时刻
的等效量测值;

步骤S4:将等效测量值作为感知存储器的输入,输出得到当前时刻的系统方程参
数;

步骤S5:根据系统方程参数和等效量测值,进行状态和量测预测,得到状态预测
值、量测预测值和状态预测协方差;

步骤S6:将获得的状态预测协方差作为执行存储器的输入,输出得到当前时刻的
发射波形参数集;

步骤S7:对于当前时刻的发射波形参数集,计算每种波形参数下的新息协方差和
状态误差协方差;

步骤S8:进行最优波形参数选择:从获得的发射波形参数集中选取最佳的发射波
形参数,使代价函数最小;

步骤S9:根据获得的最优波形参数,计算当前时刻的新息协方差、状态误差协方差
以及状态估计值。

与现有技术相比,本发明可以获得包括以下技术效果:

1、解决了现有的认知雷达目标跟踪技术在杂波环境下无法正常运行的问题。

2、提高了杂波环境下的雷达目标跟踪性能。在杂波环境下,本发明方法的目标跟
踪性能优于现有的TAR和FAR目标跟踪技术。

当然,实施本发明的任一产品并不一定需要同时达到以上所述的所有技术效果。

附图说明

此处所说明的附图用来提供对本发明的进一步理解,构成本发明的一部分,本发
明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:

图1为本发明杂波环境下的认知雷达目标跟踪方法一个实施例的流程图;

图2为仿真例中本发明方法与现有的TAR和FAR目标跟踪方法的距离均方根误差曲
线;

图3为仿真例中本发明方法与现有的TAR和FAR目标跟踪方法的速度均方根误差曲
线。

具体实施方式

以下将配合实施例来详细说明本发明的实施方式,藉此对本发明如何应用技术手
段来解决技术问题并达成技术功效的实现过程能充分理解并据以实施。

本发明杂波环境下的认知雷达目标跟踪方法,如图1所示,具体按照以下步骤实
施:

步骤S1:获取当前时刻的所有量测值,并计算落入相关波门内的量测值。

所述的相关波门是指以跟踪目标的量测预测值为中心,用来确定来自目标的量测
值可能出现范围的一块区域。相关波门的形状根据实际应用进行设计,在本发明的一个实
施例中,优选椭圆(球)相关波门,并可采用以下步骤对计算落入相关波门内的量测值进行
详细描述:

若当前时刻k等于1,则将当前时刻获取的所有量测值作为落入相关波门内的量测
值。

若当前时刻k大于等于2,则计算当前时刻获取的每一个量测值与量测预测值之间
的相关误差:


其中,zk,i为当前时刻获取的第i个量测值,为量测预测值,vi为zk,i与之间
的相关误差,N为当前时刻获取的量测值的总数,Sk为新息协方差矩阵,Sk1为Sk的逆矩阵。实
施时,和Sk分别由上一时刻计算的步骤S5和S9得到。当上述某个量测值的相关误差小
于等于相关门限时,则该量测值落入相关波门内。相关门限的取值决定了量测值落入相关
波门内的概率(即门概率),在本发明的一个实施例中,优选等于16。

步骤S2:计算落入相关波门内的每个量测值来自目标的概率:


其中,i为落入相关波门内的第i个量测值来自目标的概率,M为落入相关波门内的
所有量测值的总数,其中,为相关门限,nz为量测的维数,
与相关波门的面(体)积有关,PD为目标检测概率,PG为门概率。在本发明的一个实施例
中,设目标检测概率PD 0.9,量测维数nz=2,采用椭圆相关波门,相关门限16,分析可知:
PG 0.9997。

在实施时,若相关波门内没有量测,即M等于0,则跳过步骤S2,直接进入步骤S3。

步骤S3:根据落入相关波门内的每个量测值及其来自目标的概率,计算当前时刻
的等效量测值。

若M大于0,则当前时刻的等效量测为:

若M等于0,则当前时刻的等效测量值为:

其中,zk为当前时刻的等效量测值,zk,i和i分别为当前时刻落入相关波门内的第i
个量测值及其来自目标的概率,为量测预测值。

步骤S4:将等效测量值作为感知存储器的输入,输出得到当前时刻的系统方程参
数。

在本发明的一个实施例中,所述的感知存储器由包含一个输入层、一个隐含层和
一个输出层的三层感知神经网络构成,其输入为步骤S3中获得的等效量测zk,输出为与等
效量测最匹配的系统方程参数,具体来说,就是状态转移矩阵Fk、量测矩阵Hk和系统噪声协
方差矩阵Qk。

步骤S5:根据获得的系统方程参数和等效量测值,进行状态和量测预测,得到状态
预测值、量测预测值和状态预测协方差,具体如下:




其中,和Pk|k1分别为当前时刻的状态预测值、量测预测值和状态预
测协方差,xk1为上一时刻的状态估计值,Ek1为上一时刻的状态误差协方差。

实施时,若当前时刻k大于等于2,则xk1和Ek1由上一时刻计算的步骤S9得到;若
当前时刻k等于1,则xk1和Ek1分别取为步骤S3中获得的等效量测值zk和步骤S4中获得的系
统噪声协方差矩阵Qk。

步骤S6:将步骤S5中得到的状态预测协方差作为执行存储器的输入,输出得到当
前时刻的发射波形参数集。

在实施时,所述的执行存储器由一个发射波形库Θ以及包含一个输入层、一个隐
含层和一个输出层的三层感知神经网络共同构成。发射波形库Θ中包含多种事先设计好的
用于探测环境和目标的发射波形参数,波形库的设计由具体应用环境而定,在本发明的一
个实施例中,采用线性调频信号作为发射波形,涉及到的波形参数包括包络持续太阳城集团和调
频斜率b。三层感知神经网络的输入为步骤S5中获得的状态预测协方差Pk|k1,输出为与之
匹配的一个发射波形参数集Θk{θk,1,…,θk,r},其中,Θk为Θ的子集,r为该子集种包含波形
参数的总数量。

步骤S7:对于当前时刻的发射波形参数集,计算每种波形参数下的新息协方差和
状态误差协方差。

在实施时,可采用以下步骤对所述的计算每种波形参数下的新息协方差和状态误
差协方差进行详细描述:

新息协方差为:

状态误差协方差为:

其中,Rk(θk,j)和分别为发射波形参数为θk,j时的量测噪
声协方差和增益。如步骤S6中所述,在本发明的一个实施例中,采用线性调频信号作为发射
波形,则波形参数θk,j由包络持续太阳城集团j和调频斜率bj构成,分析可得发射波形参数为θk,j{j,
bj}时的量测噪声协方差Rk(θk,j)为:


其中,为信噪比,fc为发射信号的中心频率,c为光速。

步骤S8:进行最优波形参数选择:从步骤S6中得到的发射波形参数集中选取最佳
的发射波形参数,使代价函数最小。

在本发明的一个实施例中,所述的代价函数可以选择为状态误差协方差矩阵Ek
(θk,j)的迹,则最优波形参数就是让Ek(θk,j)的迹为最小的波形参数:


其中,Tr()表示矩阵的迹,为代价函数最小时对应的波形参数,即为最优波形参
数。如步骤S7中所述,在本发明的一个实施例中,采用线性调频信号作为发射波形,则最优
波形参数为

步骤S9:根据步骤S8中得到的最优波形参数,计算当前时刻的新息协方差、状态误
差协方差以及状态估计值,具体如下:




其中,Sk、Ek和xk分别为当前时刻最优波形参数下的新息协方差、状态误差协方
差以及状态估计值,Rk和分别为下的量测噪声协方差和增益。

下面通过一个仿真例进一步对本发明方法的效果进行详细说明。

仿真例

设有一个单目标在二维量测空间中进行线性运动,状态向量为x r,v T,其中,r和
v分别表示目标的距离和速度,设目标初始距离为3km,且以200m/s的速度向与雷达相反的
方向匀速直线运动,雷达采样间隔为25ms。设杂波密度为0.0001,目标检测概率为PD 0.9,
采用椭圆相关波门且相关门限16,对应的门概率为PG 0.9997。采用线性调频信号作为发射
波形,波形参数库为:Θ,b,其中,105:105:104为线性调频信号的包络持续太阳城集团,单位为s;b
1011:1010:1010∪1010:1010:1011为线性调频信号的调频斜率,单位为Hz/s。

分别采用本发明方法以及现有的TAR和FAR方法进行目标跟踪,图2和图3分别为三
种方法进行目标跟踪的距离和速度均方根误差曲线,图中结果均为50次蒙特卡洛实验的平
均结果。将图2和图3中的跟踪误差曲线分别在太阳城集团轴上作统计平均,得到三种方法进行目
标跟踪的距离和速度均方根均值如表1所示。

表1 仿真例中本发明方法与现有的TAR和FAR目标跟踪方法的距离和速度均方根
均值

均方根误差均值
距离(m)
速度(m/s)
TAR
6.9024
7.2573
FAR
2.9818
3.0452
本发明
0.2405
2.1813

由图2、图3和表1的结果可以看到:在杂波环境下,无论是距离跟踪还是速度跟踪,
本发明方法的跟踪误差均明显小于现有的TAR和FAR目标跟踪方法。

该仿真例的结果说明了本发明提供的一种杂波环境下的认知雷达目标跟踪方法
的有效性,以及该方法相对于现有的TAR和FAR目标跟踪方法具有更优的跟踪性能。

上述说明示出并描述了发明的若干优选实施例,但如前所述,应当理解发明并非
局限于本文所披露的形式,不应看作是对其他实施例的排除,而可用于各种其他组合、修改
和环境,并能够在本文所述发明构想范围内,通过上述教导或相关领域的技术或知识进行
改动。而本领域人员所进行的改动和变化不脱离发明的精神和范围,则都应在发明所附权
利要求的保护范围内。

关 键 词:
一种 环境 认知 雷达 目标 跟踪 方法
  专利查询网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
太阳城集团本文
本文标题:一种杂波环境下的认知雷达目标跟踪方法.pdf
链接地址:http://zh228.com/p-6100676.html
太阳城集团我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服客服 - 联系我们

copyright@ 2017-2018 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备17046363号-1 
 


收起
展开
葡京赌场|welcome document.write ('');