太阳城集团

  • / 26
  • 下载费用:30 金币  

监控装置预置位设置、切换方法及系统.pdf

摘要
申请专利号:

CN201510323629.4

申请日:

2015.06.12

公开号:

太阳城集团CN106303403A

公开日:

2017.01.04

当前法律状态:

授权

有效性:

有权

法律详情: 授权|||实质审查的生效IPC(主分类):H04N 7/18申请日:20150612|||公开
IPC分类号: H04N7/18; G06T7/20 主分类号: H04N7/18
申请人: 中国人民公安大学
发明人: 张鸿洲; 杜治国; 李培岳; 高洁; 罗万杰; 赵兴涛; 苏红; 向颖
地址: 100038 北京市西城区木樨地南里1号
优先权:
专利代理机构: 北京三聚阳光知识产权代理有限公司 11250 代理人: 李敏
PDF完整版下载: PDF下载
法律状态
申请(专利)号:

CN201510323629.4

授权太阳城集团号:

||||||

法律状态太阳城集团日:

太阳城集团2019.03.12|||2017.02.01|||2017.01.04

法律状态类型:

太阳城集团授权|||实质审查的生效|||公开

摘要

太阳城集团本发明提供了一种监控装置预置位设置、切换方法及系统,其中监控装置预置位设置方法及系统首先获取监控装置在多组预置位下的多个监控图像及每个监控图像的监视风险熵,再按照监视风险熵由大到小的顺序对每个监控图像进行排位,将排位最靠前的一个或多个监控图像对应的一组或多组预置位设置为优选预置位。本发明所述监控装置预置位设置方法及系统通过对每个监控图像进行自动分析获取其对应的监视风险熵,并选取监视风险熵数值最大时的监控图像对应的预置位作为监控装置的优选预置位,能够确保获取到最好的监控效果,设置合理,克服了现有技术中由于操作人员经验不足使得预置位设置不合理的缺陷。

权利要求书

1.一种监控装置预置位设置方法,其特征在于,包括:
获取监控装置在多组预置位下的多个监控图像及每个监控图像的监视
风险熵,所述监视风险熵用于表示监控装置对所监控场景中不安全事件或关
注事件的风险或太阳城集团的掌握程度;
按照监视风险熵由大到小的顺序对每个监控图像进行排位,将排位最靠
前的一个或多个监控图像对应的一组或多组预置位设置为优选预置位。
2.一种监控装置预置位设置方法,其特征在于,包括:
获取监控装置处于最大视角位置时的广角监控图像;
将广角监控图像划分为多个子监控图像;
选取其中一个子监控图像作为基准监控图像并获取其监视风险熵,所述
监视风险熵用于表示监控装置对所监控场景中不安全事件或关注事件的风
险或太阳城集团的掌握程度;
将与基准监控图像相邻的一个子监控图像并入基准监控图像并获取合
并后的监控图像的监视风险熵;
若合并后的监控图像的监视风险熵小于或等于基准监控图像的监视风
险熵,则将基准监控图像作为一个合并后的监控图像且不再并入新的子监控
图像;
若合并后的监控图像的监视风险熵大于基准监控图像的监视风险熵,则
将该合并后的监控图像作为新的基准监控图像,将其监视风险熵作为新的基
准监控图像的监视风险熵,并返回至所述将与基准监控图像相邻的一个子监
控图像并入基准监控图像并获取合并后的监控图像的监视风险熵的步骤;
按照监视风险熵由大到小的顺序对每个合并后的监控图像进行排位,获
取排位最靠前的一个或多个合并后的监控图像所对应的一组或多组预置位,
将其设置为优选预置位。
3.根据权利要求1或2所述的监控装置预置位设置方法,其特征在于,
获取监视风险熵的步骤包括:
识别监控图像中的运动目标、固定目标和/或重点监控区域;
获取运动目标的运动太阳城集团并对所述运动太阳城集团进行统计,获取运动太阳城集团统
计结果,所述统计结果包括运动目标的数目、太阳城集团和空间分布密度、运动速
度的大小、方向和轨迹、进出场景或者在场景中停留的位置和时长以及与运
动状态相关的太阳城集团中的至少一个;
获取固定目标和/或重点监控区域在监控图像中的覆盖程度,及固定目
标和/或重点监控区域随太阳城集团或空间变化的固有风险;
获取监控图像的视觉太阳城集团质量与监控要求之间的符合度关系;
根据所述覆盖程度以及所述固有风险获取监控装置对固定目标和/或重
点控制区域监视的第一监视风险熵;
根据所述运动太阳城集团统计结果获取运动目标引入的安全风险以及运动目
标与固定目标和/或重点监控区域之间的耦合风险,据此获取监控装置对运
动目标进行监视的第二监视风险熵;
根据所述符合度关系获取与监控装置视觉太阳城集团采集质量相关的第三监
视风险熵;
将所述第一监视风险熵、所述第二监视风险熵以及所述第三监视风险熵
加权得到监视风险熵。
4.根据权利要求3所述的监控装置预置位设置方法,其特征在于,所述
根据所述覆盖程度以及所述固有风险获取监控装置对固定目标和/或重点控
制区域监视的第一监视风险熵的步骤中,通过如下公式计算第一监视风险
熵:
<mrow> <msub> <mi>S</mi> <mn>1</mn> </msub> <mo>=</mo> <munder> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>+</mo> <mi>j</mi> </mrow> </munder> <msub> <mi>S</mi> <mrow> <mn>1</mn> <mo>,</mo> <mi>i</mi> <mo>+</mo> <mi>j</mi> </mrow> </msub> </mrow>
其中,

<mrow> <msub> <mi>S</mi> <mrow> <mn>1</mn> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>=</mo> <mo>-</mo> <msub> <mi>Tw</mi> <mi>j</mi> </msub> <mo>&CenterDot;</mo> <mi>lg</mi> <mrow> <mo>(</mo> <msub> <mi>p</mi> <mi>j</mi> </msub> <mfrac> <msub> <mi>A</mi> <mi>in</mi> </msub> <msub> <mi>A</mi> <mi>total</mi> </msub> </mfrac> <mo>)</mo> </mrow> </mrow>重点控制区域
Tsi是第i个固定目标在发生危险时的危害程度,Twj是第j个重点控制
区域在发生危险时的危害程度,Pi是第i个固定目标不安全事件发生的概率,
Pj是第j个重点控制区域不安全事件发生的概率,且Tsi、Twj、Pi、Pj均随时
间或空间变化,Ain为重点控制区域在监控图像中的覆盖面积,Atotal为监控图
像的总面积,S1,i是第i个固定目标的监视风险熵,S1,j是第j个重点控制区
域的监视风险熵,S1是所有固定目标和/或重点控制区域的监视风险熵之和。
5.根据权利要求3或4所述的监控装置预置位设置方法,其特征在于,
所述根据所述运动太阳城集团统计结果获取运动目标引入的安全风险以及运动目
标与固定目标和/或重点监控区域之间的耦合风险,据此获取监控装置对运
动目标进行监视的第二监视风险熵的步骤中,通过如下公式计算第二监视风
险熵:
S2=(β1SM+β2SMS)
β1β2分别代表权重,SM是与运动目标自身相关的监视风险熵,SMS是运
动目标对固定目标和/或重点监视区域产生威胁的监视风险熵;
其中,
SM=-TMlg(p|pM)=-TM(lgp+lgpM)

SMS=-TSlg(p|PMS)

TM由运动目标引入的安全风险确定,TS由固定目标和/或重点监视区域
随太阳城集团或空间变化的固有风险确定,p为运动目标出现在监控图像中的概
率,PM为运动目标不安全事件的发生概率,PMS为运动目标与固定目标和/或重
点监控区域耦合事件的发生概率;ρ为运动目标在太阳城集团和空间分布密度,n
为运动目标的数目,为运动目标的运动速度矢量,t为运动目标的太阳城集团属
性,Δt为运动目标在场景中停留的时长,为运动目标与固定目标和/或重
点监控区域之间的相对位置。
6.根据权利要求3-5任一所述的监控装置预置位设置方法,其特征在
于,所述根据监控图像的视觉太阳城集团质量与监控要求之间的符合度关系获取与
监控装置视觉太阳城集团采集质量相关的第三监视风险熵的步骤中,通过如下公式
计算第三监视风险熵:
<mrow> <msub> <mi>S</mi> <mi>VQ</mi> </msub> <mo>=</mo> <mo>-</mo> <munder> <mi>&Sigma;</mi> <mi>k</mi> </munder> <msub> <mi>&omega;</mi> <mi>k</mi> </msub> <mi>lg</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>k</mi> </msub> <mo>|</mo> <mi>p</mi> <mo>)</mo> </mrow> <mo>=</mo> <mo>-</mo> <munder> <mi>&Sigma;</mi> <mi>k</mi> </munder> <msub> <mi>&omega;</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>lg</mi> <msub> <mi>&theta;</mi> <mi>k</mi> </msub> <mo>+</mo> <mi>lgp</mi> <mo>)</mo> </mrow> </mrow>
其中,θk代表视觉太阳城集团质量与监控要求之间的符合度关系中的第k个视
觉太阳城集团采集质量指标的主观或客观满意度,ωk代表权重。
7.一种通过权利要求1-6任一所述的监控装置预置位设置方法获取的
监控装置预置位间的切换方法,其特征在于,包括:
根据运动目标的太阳城集团和空间的统计特性与优选预置位所对应的监控图
像之间在太阳城集团和空间上的关联,设定优选预置位之间的切换太阳城集团和顺序。
8.一种监控装置预置位设置系统,其特征在于,包括:
监控单元(11),用于获取监控装置在多组预置位下的多个监控图像及
每个监控图像的监视风险熵,所述监视风险熵用于表示监控装置对所监控场
景中不安全事件或关注事件的风险或太阳城集团的掌握程度;
预置位选取单元(12),用于按照监视风险熵由大到小的顺序对每个监
控图像进行排位,将排位最靠前的一个或多个监控图像对应的一组或多组预
置位设置为优选预置位。
9.一种监控装置预置位设置系统,其特征在于,包括:
广角监控图像获取单元(21),用于获取监控装置处于最大视角位置时
的广角监控图像;
划分单元(22),用于将广角监控图像划分为多个子监控图像;
基准选取单元(23),用于选取其中一个子监控图像作为基准监控图像
并获取其监视风险熵,所述监视风险熵用于表示监控装置对所监控场景中不
安全事件或关注事件的风险或太阳城集团的掌握程度;
合并单元(24),用于将与基准监控图像相邻的一个子监控图像并入基
准监控图像并获取合并后的监控图像的监视风险熵;
第一处理单元(25),用于在合并后的监控图像的监视风险熵小于或等
于基准监控图像的监视风险熵时,将基准监控图像作为一个合并后的监控图
像且不再并入新的子监控图像;
第二处理单元(26),用于在合并后的监控图像的监视风险熵大于基准
监控图像的监视风险熵时,将该合并后的监控图像作为新的基准监控图像,
将其监视风险熵作为新的基准监控图像的监视风险熵,并激活所述合并单元
(24);
选取单元(27),用于按照监视风险熵由大到小的顺序对每个合并后的
监控图像进行排位,获取排位最靠前的一个或多个合并后的监控图像所对应
的一组或多组预置位,将其设置为优选预置位。
10.根据权利要求8或9所述的监控装置预置位设置系统,其特征在于,
所述监控单元(11)、所述基准选取单元(23)以及所述合并单元(24)中
均包括监视风险熵获取子单元(3),其进一步包括:
识别器(31),用于识别监控图像中的运动目标、固定目标和/或重点监
控区域;
统计器(32),用于获取运动目标的运动太阳城集团并对所述运动太阳城集团进行统
计,获取运动太阳城集团统计结果,所述统计结果包括运动目标的数目、太阳城集团和空
间分布密度、运动速度的大小、方向和轨迹、进出场景或者在场景中停留的
位置和时长以及与运动状态相关的太阳城集团中的至少一个;
第一获取器(33),用于获取固定目标和/或重点监控区域在监控图像中
的覆盖程度,及固定目标和/或重点监控区域随太阳城集团或空间变化的固有风险;
第二获取器(34),用于获取监控图像的视觉太阳城集团质量与监控要求之间
的符合度关系;
第一监视风险熵获取器(35),用于根据所述覆盖程度以及所述固有风
险获取监控装置对固定目标和/或重点控制区域监视的第一监视风险熵;
第二监视风险熵获取器(36),用于根据所述运动太阳城集团统计结果获取运
动目标引入的安全风险以及运动目标与固定目标和/或重点监控区域之间的
耦合风险,据此获取监控装置对运动目标进行监视的第二监视风险熵;
第三监视风险熵获取器(37),用于根据所述符合度关系获取与监控装
置视觉太阳城集团采集质量相关的第三监视风险熵;
监视风险熵获取器(38),用于将所述第一监视风险熵、所述第二监视
风险熵以及所述第三监视风险熵加权得到监视风险熵。

说明书

监控装置预置位设置、切换方法及系统

技术领域

本发明涉及安防技术领域,具体地说涉及一种监控装置预置位设置、切
换方法及系统。

背景技术

摄像机的视角位置通常称为预置位,主要由以下参数确定:摄像机镜头
的焦距f,摄像机光轴延长线在水平面内的投影与水平面内的参考方向所成
的夹角θ,摄像机光轴延长线与垂直方向相夹而成的俯仰角度Ф。θ、Ф的
定义分别参照图1和图2。每一组确定的(f、θ、Ф)即为一个摄像机的
预置位,一个给定的监视区域所对应的预置位(f、θ、Ф)是确定的,预
置位的计算可参照通用的几何光学的计算方法。

目前,视频监控系统主要采用两大类型监控摄像机,分别为固定视角的
摄像机和视角可控制摄像机。

固定视角的摄像机一般俗称为“枪机”,这种摄像机的安装方位角是固
定的,通常采用定焦镜头,因此,枪机安装后的预置位是固定的,其视角或
者视场范围也是固定的,监控范围有限且不灵活。在实际视频监控系统运行
的过程中,固定视角的摄像机的预置位主要由人工根据监控经验设置。

视角可控制摄像机俗称“球机”,安装于可控云台或者与云台为一体化
设计,且镜头焦距可调,可以根据监控的需要通过后台实现转动、变焦等功
能,从而改变监控视场范围,可以有效地解决“枪机”监控范围有限且不灵
活的问题。在实际视频监控系统运行中,视角可控制摄像机的预置位有如下
几种设置、切换方法:一是人工根据监控经验,提前设置预置位及预置位间
的切换方式,但是实际场景中人员及车辆的情况是千变万化的,人流、车流
及安全事件的发生具有时变性,预先设置好的预置位及预置位间的切换方式
很难对如此快速变化的场景进行有效监控;二是根据临时需要,人工手动调
整摄像机位置与监控角度,如长太阳城集团不操作后,将自动恢复到原先设置的某
一个预置位;三是不设置任何预置位,全部依赖人工手动调整监控位置。但
因为第二种和第三种方式,主要靠人工进行调整,但是前端摄像机的数量远
远大于操作人员的数量,很难实现对每一视角可控摄像机都采用人工调整。

实际应用中,因为监控画面的视场范围与视觉质量之间存在一定的矛
盾,视场范围越宽泛,获得的整体场景情况太阳城集团越多,但获取的具体目标的
细节太阳城集团就越少,视觉质量也就越差;反之若获取的目标细节太阳城集团较多(视
觉质量高)时又不能掌控宏观太阳城集团,视场范围越狭窄,获得的整体场景情况
太阳城集团就越少。因此,预置位的设置对操作人员的经验有很高的要求,而现有
技术中,无论是固定视角的摄像机还是视角可控制摄像机,其预置位均由人
工根据监控经验来设置,有可能因为操作人员经验不足使得预置位设置不合
理,导致监控效果不理想。

发明内容

为此,本发明所要解决的技术问题在于现有技术中有可能因为操作人员
经验不足使得预置位设置不合理,导致监控效果不理想。

为解决上述技术问题,本发明的技术方案如下:

本发明提供了一种监控装置预置位设置方法,包括:

获取监控装置在多组预置位下的多个监控图像及每个监控图像的监视
风险熵,所述监视风险熵用于表示监控装置对所监控场景中不安全事件或关
注事件的风险或太阳城集团的掌握程度;

按照监视风险熵由大到小的顺序对每个监控图像进行排位,将排位最靠
前的一个或多个监控图像对应的一组或多组预置位设置为优选预置位。

本发明所述监控装置预置位设置方法,包括:

获取监控装置处于最大视角位置时的广角监控图像;

将广角监控图像划分为多个子监控图像;

选取其中一个子监控图像作为基准监控图像并获取其监视风险熵,所述
监视风险熵用于表示监控装置对所监控场景中不安全事件或关注事件的风
险或太阳城集团的掌握程度;

将与基准监控图像相邻的一个子监控图像并入基准监控图像并获取合
并后的监控图像的监视风险熵;

若合并后的监控图像的监视风险熵小于或等于基准监控图像的监视风
险熵,则将基准监控图像作为一个合并后的监控图像且不再并入新的子监控
图像;

若合并后的监控图像的监视风险熵大于基准监控图像的监视风险熵,则
将该合并后的监控图像作为新的基准监控图像,将其监视风险熵作为新的基
准监控图像的监视风险熵,并返回至所述将与基准监控图像相邻的一个子监
控图像并入基准监控图像并获取合并后的监控图像的监视风险熵的步骤;

按照监视风险熵由大到小的顺序对每个合并后的监控图像进行排位,获
取排位最靠前的一个或多个合并后的监控图像所对应的一组或多组预置位,
将其设置为优选预置位。

本发明所述的监控装置预置位设置方法,获取监视风险熵的步骤包括:

识别监控图像中的运动目标、固定目标和/或重点监控区域;

获取运动目标的运动太阳城集团并对所述运动太阳城集团进行统计,获取运动太阳城集团统
计结果,所述统计结果包括运动目标的数目、太阳城集团和空间分布密度、运动速
度的大小、方向和轨迹、进出场景或者在场景中停留的位置和时长以及与运
动状态相关的太阳城集团中的至少一个;

获取固定目标和/或重点监控区域在监控图像中的覆盖程度,及固定目
标和/或重点监控区域随太阳城集团或空间变化的固有风险;

获取监控图像的视觉太阳城集团质量与监控要求之间的符合度关系;

根据所述覆盖程度以及所述固有风险获取监控装置对固定目标和/或重
点控制区域监视的第一监视风险熵;

根据所述运动太阳城集团统计结果获取运动目标引入的安全风险以及运动目
标与固定目标和/或重点监控区域之间的耦合风险,据此获取监控装置对运
动目标进行监视的第二监视风险熵;

根据所述符合度关系获取与监控装置视觉太阳城集团采集质量相关的第三监
视风险熵;

将所述第一监视风险熵、所述第二监视风险熵以及所述第三监视风险熵
加权得到监视风险熵。

本发明所述的监控装置预置位设置方法,所述根据所述覆盖程度以及所
述固有风险获取监控装置对固定目标和/或重点控制区域监视的第一监视风
险熵的步骤中,通过如下公式计算第一监视风险熵:

<mrow> <msub> <mi>S</mi> <mn>1</mn> </msub> <mo>=</mo> <munder> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>+</mo> <mi>j</mi> </mrow> </munder> <msub> <mi>S</mi> <mrow> <mn>1</mn> <mo>,</mo> <mi>i</mi> <mo>+</mo> <mi>j</mi> </mrow> </msub> </mrow>

其中,


<mrow> <msub> <mi>S</mi> <mrow> <mn>1</mn> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>=</mo> <mo>-</mo> <mi>T</mi> <msub> <mi>w</mi> <mi>j</mi> </msub> <mo>&CenterDot;</mo> <mi>lg</mi> <mrow> <mo>(</mo> <msub> <mi>p</mi> <mi>j</mi> </msub> <mfrac> <msub> <mi>A</mi> <mi>in</mi> </msub> <msub> <mi>A</mi> <mi>total</mi> </msub> </mfrac> <mo>)</mo> </mrow> </mrow>重点控制区域

Tsi是第i个固定目标在发生危险时的危害程度,Twj是第j个重点控制
区域在发生危险时的危害程度,Pi是第i个固定目标不安全事件发生的概率,
Pj是第j个重点控制区域不安全事件发生的概率,且Tsi、Twj、Pi、Pj均随时
间或空间变化,Ain为重点控制区域在监控图像中的覆盖面积,Atotal为监控图
像的总面积,S1,i是第i个固定目标的监视风险熵,S1,j是第j个重点控制区
域的监视风险熵,S1是所有固定目标和/或重点控制区域的监视风险熵之和。

本发明所述的监控装置预置位设置方法,所述根据所述运动太阳城集团统计结
果获取运动目标引入的安全风险以及运动目标与固定目标和/或重点监控区
域之间的耦合风险,据此获取监控装置对运动目标进行监视的第二监视风险
熵的步骤中,通过如下公式计算第二监视风险熵:

S2=(β1SM+β2SMS)

β1β2分别代表权重,SM是与运动目标自身相关的监视风险熵,SMS是运
动目标对固定目标和/或重点监视区域产生威胁的监视风险熵;

其中,

SM=-TMlg(p|pM)=-TM(lgp+lgpM)


SMS=-TSlg(p|PMS)


TM由运动目标引入的安全风险确定,TS由固定目标和/或重点监视区域
随太阳城集团或空间变化的固有风险确定,p为运动目标出现在监控图像中的概
率,PM为运动目标不安全事件的发生概率,PMS为运动目标与固定目标和/或重
点监控区域耦合事件的发生概率;ρ为运动目标在太阳城集团和空间分布密度,n
为运动目标的数目,为运动目标的运动速度矢量,t为运动目标的太阳城集团属
性,Δt为运动目标在场景中停留的时长,为运动目标与固定目标和/或重
点监控区域之间的相对位置。

本发明所述的监控装置预置位设置方法,所述根据监控图像的视觉太阳城集团
质量与监控要求之间的符合度关系获取与监控装置视觉太阳城集团采集质量相关
的第三监视风险熵的步骤中,通过如下公式计算第三监视风险熵:

<mrow> <msub> <mi>S</mi> <mi>VQ</mi> </msub> <mo>=</mo> <mo>-</mo> <munder> <mi>&Sigma;</mi> <mi>k</mi> </munder> <msub> <mi>&omega;</mi> <mi>k</mi> </msub> <mi>lg</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>k</mi> </msub> <mo>|</mo> <mi>p</mi> <mo>)</mo> </mrow> <mo>=</mo> <mo>-</mo> <munder> <mi>&Sigma;</mi> <mi>k</mi> </munder> <msub> <mi>&omega;</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>lg</mi> <msub> <mi>&theta;</mi> <mi>k</mi> </msub> <mo>+</mo> <mi>lgp</mi> <mo>)</mo> </mrow> </mrow>

其中,θk代表视觉太阳城集团质量与监控要求之间的符合度关系中的第k个视
觉太阳城集团采集质量指标的主观或客观满意度,ωk代表权重。

本发明还提供了一种通过上述监控装置预置位设置方法获取的监控装
置预置位间的切换方法,包括:

根据运动目标的太阳城集团和空间的统计特性与优选预置位所对应的监控图
像之间在太阳城集团和空间上的关联,设定优选预置位之间的切换太阳城集团和顺序。

本发明还提供了一种监控装置预置位设置系统,包括:

监控单元,用于获取监控装置在多组预置位下的多个监控图像及每个监
控图像的监视风险熵,所述监视风险熵用于表示监控装置对所监控场景中不
安全事件或关注事件的风险或太阳城集团的掌握程度;

预置位选取单元,用于按照监视风险熵由大到小的顺序对每个监控图像
进行排位,将排位最靠前的一个或多个监控图像对应的一组或多组预置位设
置为优选预置位。

本发明所述监控装置预置位设置系统,包括:

广角监控图像获取单元,用于获取监控装置处于最大视角位置时的广角
监控图像;

划分单元,用于将广角监控图像划分为多个子监控图像;

基准选取单元,用于选取其中一个子监控图像作为基准监控图像并获取
其监视风险熵,所述监视风险熵用于表示监控装置对所监控场景中不安全事
件或关注事件的风险或太阳城集团的掌握程度;

合并单元,用于将与基准监控图像相邻的一个子监控图像并入基准监控
图像并获取合并后的监控图像的监视风险熵;

第一处理单元,用于在合并后的监控图像的监视风险熵小于或等于基准
监控图像的监视风险熵时,将基准监控图像作为一个合并后的监控图像且不
再并入新的子监控图像;

第二处理单元,用于在合并后的监控图像的监视风险熵大于基准监控图
像的监视风险熵时,将该合并后的监控图像作为新的基准监控图像,将其监
视风险熵作为新的基准监控图像的监视风险熵,并激活所述合并单元;

选取单元,用于按照监视风险熵由大到小的顺序对每个合并后的监控图
像进行排位,获取排位最靠前的一个或多个合并后的监控图像所对应的一组
或多组预置位,将其设置为优选预置位。

本发明所述的监控装置预置位设置系统,所述监控单元、所述基准选取
单元以及所述合并单元中均包括监视风险熵获取子单元,其进一步包括:

识别器,用于识别监控图像中的运动目标、固定目标和/或重点监控区
域;

统计器,用于获取运动目标的运动太阳城集团并对所述运动太阳城集团进行统计,获
取运动太阳城集团统计结果,所述统计结果包括运动目标的数目、太阳城集团和空间分布
密度、运动速度的大小、方向和轨迹、进出场景或者在场景中停留的位置和
时长以及与运动状态相关的太阳城集团中的至少一个;

第一获取器,用于获取固定目标和/或重点监控区域在监控图像中的覆
盖程度,及固定目标和/或重点监控区域随太阳城集团或空间变化的固有风险;

第二获取器,用于获取监控图像的视觉太阳城集团质量与监控要求之间的符合
度关系;

第一监视风险熵获取器,用于根据所述覆盖程度以及所述固有风险获取
监控装置对固定目标和/或重点控制区域监视的第一监视风险熵;

第二监视风险熵获取器,用于根据所述运动太阳城集团统计结果获取运动目标
引入的安全风险以及运动目标与固定目标和/或重点监控区域之间的耦合风
险,据此获取监控装置对运动目标进行监视的第二监视风险熵;

第三监视风险熵获取器,用于根据所述符合度关系获取与监控装置视觉
太阳城集团采集质量相关的第三监视风险熵;

监视风险熵获取器,用于将所述第一监视风险熵、所述第二监视风险熵
以及所述第三监视风险熵加权得到监视风险熵。

本发明的上述技术方案相比现有技术具有以下优点:

(1)本发明提供了一种监控装置预置位设置方法及系统,首先获取监
控装置在多组预置位下的多个监控图像及每个监控图像的监视风险熵,再按
照监视风险熵由大到小的顺序对每个监控图像进行排位,将排位最靠前的一
个或多个监控图像对应的一组或多组预置位设置为优选预置位。因为所述监
视风险熵用于表示监控装置对所监控场景中不安全事件或关注事件的风险
或太阳城集团的掌握程度,因此监控图像的监视风险熵越大,对监控场景中不安全
事件或关注事件的风险或太阳城集团的掌握程度就越深入,监控效果也就越好。本
发明所述监控装置预置位设置方法及系统通过对每个监控图像进行自动分
析获取其对应的监视风险熵,并选取监视风险熵数值最大时的监控图像对应
的预置位作为监控装置的优选预置位,能够确保获取到最好的监控效果,设
置合理,克服了现有技术中由于操作人员经验不足使得预置位设置不合理的
缺陷。

(2)本发明还提供了另外一种监控装置预置位设置方法及系统,先获
取监控装置处于最大视角位置时的广角监控图像,再将广角监控图像划分为
多个子监控图像,之后选取其中一个子监控图像作为基准监控图像,并以基
准监控图像为中心,按照由近及远的顺序依次并入相邻或邻近位置的子监控
图像,直至合并后的监控图像的监视风险熵达到最大值。因为监控装置获取
的监控图像的监视风险熵越大,监控效果就越理想,因此监视风险熵最大的
合并后的监控图像所对应的预置位,是监控效果最好,设置最合理的预置位。
本发明所述监控装置预置位设置方法及系统通过对每个合并后的监控图像
进行自动分析获取其对应的监视风险熵,并选取监视风险熵数值最大时的合
并后的监控图像对应的预置位作为监控装置的优选预置位,能够确保获取到
最好的监控效果,设置合理,克服了现有技术中由于操作人员经验不足使得
预置位设置不合理的缺陷。另,通过判断合并后的监控图像的监视风险熵是
否增加就可以确定监控效果最佳的监控图像并据此计算出监控效果最优的
预置位了,无需再逐个遍历监控装置的预置位以寻找最优的预置位,缩短了
验证调试太阳城集团。

(3)本发明所述监控装置预置位设置方法及系统,根据与运动目标自
身引入的安全风险有关的第一监视风险熵、与固定目标和/或重点监控区域
在监控图像中的覆盖程度及固定目标和/或重点控制区域的固有风险有关的
第二监视风险熵、与监控图像的视觉太阳城集团质量与监控要求之间的符合度有关
的第三监视风险熵之间的加权得到监视风险熵,其中第一监视风险熵和第二
监视风险熵涉及监控图像对风险点的空间覆盖,第三监视风险熵涉及能否取
得高质量的视觉太阳城集团,而两者之间是一对矛盾的需求,本发明所述监控装置
预置位设置方法及系统通过第一监视风险熵、第二监视风险熵、第三监视风
险熵之间的加权来获取监视风险熵,因此监视风险熵最大时,说明该监视风
险熵所对应的监控图像能够覆盖监控场景中的风险点,并且也具有较高质量
的视觉太阳城集团,也即监控图像在这两方面的综合效果达到最优,兼顾了视场范
围和视觉质量。

(4)本发明还提供了一种上述预置位之间的切换方法及系统,根据运
动目标的太阳城集团和空间的统计特性与优选预置位所对应的监控图像之间在时
间和空间上的关联,设定优选预置位之间的切换太阳城集团和顺序。因此,本发明
所述预置位之间的切换方法及系统,其预置位切换时的巡航路径并非固定
的,而是根据运动目标在太阳城集团和空间上的变化特性进行实时自动调整,方便
灵活,能够对快速变化的场景进行有效监控,达到最好的监控捕获效果。

附图说明

为了使本发明的内容更容易被清楚的理解,下面根据本发明的具体实施
例并结合附图,对本发明作进一步详细的说明,其中

图1是本发明背景技术部分所述预置位中摄像机光轴延长线与垂直方
向相夹而成的俯仰角度Ф的示意图;

图2是本发明背景技术部分所述摄像机光轴延长线在水平面内的投影
与水平面内的参考方向所成的夹角θ;

图3是本发明实施例1所述监控装置预置位设置方法的流程图;

图4是本发明实施例2所述监控装置预置位设置方法的流程图;

图5是本发明所述监控装置预置位设置方法中获取监视风险熵的流程
图;

图6是本发明实施例1所述监控装置预置位设置系统的结构框图;

图7是本发明实施例2所述监控装置预置位设置系统的结构框图;

图8是本发明所述监控装置预置位设置系统中监视风险熵获取子单元
的结构框图。

图中附图标记表示为:11-监控单元,12-预置位选取单元,21-广角监
控图像获取单元,22-划分单元,23-基准选取单元,24-合并单元,25-第一
处理单元,26-第二处理单元,27-选取单元,3-监视风险熵获取子单元,31-
识别器,32-统计器,33-第一获取器,34-第二获取器,35-第一监视风险熵
获取器,36-第二监视风险熵获取器,37-第三监视风险熵获取器,38-监视
风险熵获取器。

具体实施方式

实施例1

本实施例提供了一种监控装置预置位设置方法,如图3所示,包括:

S11.获取监控装置在多组预置位下的多个监控图像及每个监控图像的
监视风险熵,所述监视风险熵用于表示监控装置对所监控场景中不安全事件
或关注事件的风险或太阳城集团的掌握程度。

S12.按照监视风险熵由大到小的顺序对每个监控图像进行排位,将排位
最靠前的一个或多个监控图像对应的一组或多组预置位设置为优选预置位。

具体地,步骤S11、S12中所述监控装置可以为固定视角的摄像机,也
可以为视角可控制摄像机,当监控装置为固定视角的摄像机(枪机)时,因
为其安装后位置不能调整,因此只选取监控图像在监视风险熵最大时的预置
位作为优选预置位就可以了,能够确保获取到较好的监控效果;当监控装置
为视角可控制摄像机(球机)时,因为实际场景中人员及车辆的情况是千变
万化的,人流、车流及安全事件的发生具有时变性,因此不同时段内的最优
预置位有可能会有所不同,通过选取排位最靠前的几组预置位作为优选预置
位,为后期根据实际监控需求切换至最适合当时情况的预置位奠定了基础,
能够确保获取到最优的监控图像,对场景进行有效的监控。

另,因为监控装置可以设置成多种视角位置(预置位),在具体应用中,
为了验证各个预置位的监控效果,如果条件允许,需要尽可能多的遍历监控
装置的多组不同的预置位,从中选取出监视风险熵最大的监控图像对应的预
置位,能够使监控装置及时监控获取到监控场景中不安全事件或关注事件的
风险或太阳城集团。

因为所述监视风险熵用于表示监控装置对所监控场景中不安全事件或
关注事件的风险或太阳城集团的掌握程度,因此监控图像的监视风险熵越大,对监
控场景中不安全事件或关注事件的风险或太阳城集团的掌握程度就越深入,监控效
果也就越好。本实施例所述监控装置预置位设置方法通过对每个监控图像进
行自动分析获取其对应的监视风险熵,并选取监视风险熵数值最大时的监控
图像对应的预置位作为监控装置的优选预置位,能够确保获取到最好的监控
效果,设置合理,克服了现有技术中由于操作人员经验不足使得预置位设置
不合理的缺陷。

优选地,如图5所示,获取监视风险熵的步骤可以包括:

S31.识别监控图像中的运动目标、固定目标和/或重点监控区域。

S32.获取运动目标的运动太阳城集团并对所述运动太阳城集团进行统计,获取运动信
息统计结果,所述统计结果包括运动目标的数目、太阳城集团和空间分布密度、运
动速度的大小、方向和轨迹、进出场景或者在场景中停留的位置和时长以及
与运动状态相关的太阳城集团中的至少一个。

S33.获取固定目标和/或重点监控区域在监控图像中的覆盖程度,及固
定目标和/或重点监控区域随太阳城集团或空间变化的固有风险。

S34.获取监控图像的视觉太阳城集团质量与监控要求之间的符合度关系。

S35.根据所述覆盖程度以及所述固有风险获取监控装置对固定目标和/
或重点控制区域监视的第一监视风险熵。

S36.根据所述运动太阳城集团统计结果获取运动目标引入的安全风险以及运
动目标与固定目标和/或重点监控区域之间的耦合风险,据此获取监控装置
对运动目标进行监视的第二监视风险熵。

S37.根据所述符合度关系获取与监控装置视觉太阳城集团采集质量相关的第
三监视风险熵。

S38.将所述第一监视风险熵、所述第二监视风险熵以及所述第三监视风
险熵加权得到监视风险熵。

具体地,步骤S31中,对于运动目标、固定目标和/或重点控制区域的
识别,可以选用现有技术中的任何一种识别方法来实现。运动目标即为监控
场景中运动的目标,在一个监控场景中有多种运动目标,可以根据监控任务
选取需要监控的运动目标,比如监控任务是监察是否发生打架、斗殴等暴力
事件,则运动目标确定为人,如果监控任务主要是看是否有交通违章,可以
将运动目标确定为机动车辆等;固定目标和/或重点控制区域是根据监控任
务设置的,比如监控场景内有危险物品,比如加油站、汽油桶、存储危险品
的仓库等,或者监控场景内有人流密集区域,比如电梯口、商城入口等,可
以将其设置为固定目标或者将其周围的区域划定为重点控制区域,进行重点
监控。一个监控场景中的固定目标和重点监控区域可以有多个,可以既设定
固定目标又设定重点监控区域,也可以只设定其中之一,具体根据监控需求
来设定。选定的每个固定目标和重点监控区域的类别、安防级别或与潜在安
全风险关联的重要程度可以参照安全监控要求或相关操作标准、规范来设
定,符合监控场景以及监控任务的实际情况和需求。

步骤S32中,识别出监控图像中的运动目标后,就能获取运动目标的运
动轨迹,也即运动目标随太阳城集团和空间变化的运动太阳城集团,比如运动目标什么时
间出现在了什么位置,通过监控图像就可以识别获取,通过对运动太阳城集团进行
统计,就可以获取到运动太阳城集团统计结果,包括运动目标的数目、太阳城集团和空间
分布密度、运动速度的大小、方向和轨迹、进出场景或者在场景中停留的位
置和时长以及与运动状态相关的太阳城集团等,可以根据实际监控需求确定具体统
计运动目标的哪些运动太阳城集团。可以只统计一种运动太阳城集团也可以统计多种运动
太阳城集团,为后期计算与运动目标引入的安全风险及其与固定目标和/或重点监
控区域之间的耦合风险监视风险熵奠定了基础。

步骤S33中,通过识别监控图像中的固定目标和重点监控区域,自然就
能获取固定目标和/或重点控制区域在监控图像中的覆盖程度,当然其覆盖
程度越高,监控效果肯定越理想。太阳城集团固定目标和/或重点监控区域随太阳城集团
或/空间变化的固有风险,可以根据固定目标和/或重点监控区域的类别、安
防级别或与潜在安全风险关联来设定,比如固定目标是一个汽油桶的时候,
其潜在安全风险就比较高,可以设定较大的固有风险值,并且汽油桶越靠近
人员密集区,其固有风险值就越高,且因为汽油桶在高温情况下更容易发生
危险,因此随着太阳城集团的变化,越临近午时,温度越高,其固有风险值也会相
应增加。当然有的固定目标和/或重点监控区域的固有风险也可能不会随空
间或太阳城集团的变化而变化,比如,在一个出入口控制系统中,关键位置的出入
控制装置(如门锁)若损毁则会造成安全事故(并有一定量的可计算风险),
但通常不考虑控制装置的随太阳城集团老化问题,其固有风险是一个以损毁概率为
基础的常量。通过获取固定目标和/或重点监控区域在监控图像中的覆盖程
度及其随太阳城集团或空间变化的固有风险,为后期确定固定目标和/或重点监控
区域的监视风险奠定了基础。

步骤S34中,监控图像的视觉太阳城集团质量与监控要求之间的符合度关系可
以使用完成一种监控任务的所需的图像区域或目标的图像质量的主观或客
观评价指标与实际监控图像的质量评价指标间的差异来表示。完成一种监控
任务的所需的图像区域或目标的图像质量的主观或客观评价指标可以参照
安全监控要求或相关操作标准来设定,例如在人员监控的场合中,如果希望
识别人的身份,则会对人脸部分的像素数、人脸的角度等评价指标提出要求,
如果希望区别人和车,则会对像素数、颜色失真度、对比度、清晰度等评价
指标提出要求。尽管这些指标越高越能符合要求(这时往往对应与较小的视
场范围),但是在一些场合中,这些指标也不能过高,例如如果人脸区域在
画面中所占的像素数过大,可能造成自动人脸检测算法的失败,因此具体的
评价指标需要参照安全监控要求或相关操作标准来设定。通过对实际获取的
监控图像按照上述安全监控要求或相关操作标准来评价分析,就可以获取到
实际监控图像的质量评价指标,因此,所需的图像区域或目标的图像质量的
主观或客观评价指标与实际监控图像的质量评价指标间的差异性越小,视觉
太阳城集团质量与监控要求之间符合度越高,监控效果越理想,反之符合度越低,
图像质量越差。能够对监控装置获取的监控图像的视觉质量进行复合监控要
求的客观评价,为后期获取与视觉太阳城集团采集质量相关的监视风险奠定了基
础。

步骤S35中,覆盖程度越高、固有风险越大,则第一监视风险熵也就越
大,监控图像的视场范围就越宽广。

优选地,可以通过如下公式计算第一监视风险熵:

<mrow> <msub> <mi>S</mi> <mn>1</mn> </msub> <mo>=</mo> <munder> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>+</mo> <mi>j</mi> </mrow> </munder> <msub> <mi>S</mi> <mrow> <mn>1</mn> <mo>,</mo> <mi>i</mi> <mo>+</mo> <mi>j</mi> </mrow> </msub> </mrow>

其中,


<mrow> <msub> <mi>S</mi> <mrow> <mn>1</mn> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>=</mo> <mo>-</mo> <mi>T</mi> <msub> <mi>w</mi> <mi>j</mi> </msub> <mo>&CenterDot;</mo> <mi>lg</mi> <mrow> <mo>(</mo> <msub> <mi>p</mi> <mi>j</mi> </msub> <mfrac> <msub> <mi>A</mi> <mi>in</mi> </msub> <msub> <mi>A</mi> <mi>total</mi> </msub> </mfrac> <mo>)</mo> </mrow> </mrow>重点控制区域

Tsi是第i个固定目标在发生危险时的危害程度,Twj是第j个重点控制
区域在发生危险时的危害程度,Pi是第i个固定目标不安全事件发生的概率,
Pj是第j个重点控制区域不安全事件发生的概率,且Tsi、Twj、Pi、Pj均随时
间或空间变化,Ain为重点控制区域在监控图像中的覆盖面积,Atotal为监控图
像的总面积,S1,i是第i个固定目标的监视风险熵,S1,j是第j个重点控制区
域的监视风险熵,S1是所有固定目标和/或重点控制区域的监视风险熵之和。

具体地,因为一个监控场景中有可能根据监控任务或要求,设定了多个
固定目标和/或重点监控区域,因此整个监控场景中的第一风险熵应该为所
有的固定目标和/或重点控制区域的监视风险熵之和。Tsi和Twj是根据每个
固定目标和/或重点控制区域的类别和特性来确定的,比如汽油桶(固定目
标)在发生危险时的危害程度就比大,另外汽油桶所处的位置以及监控时的
太阳城集团也会影响其发生危险时的危害程度,因此Tsi随太阳城集团或空间变化而变化
的,并且发生不安全事件的概率Pi也会随太阳城集团和空间的变化而变化,比如早
晚高峰,人多车多发生不安全事件的概率就会比较高,凌晨监控场景中运动
目标较少,发生不安全事件的概率就会比较低,具体根据监控场景的类别和
监控的需求来设置上述参数的变化规律。当监控图像中能监控到固定目标
时,因为能时刻通过监控图像看到固定目标,一旦有危险,可以及时获取危
险太阳城集团,则此种情况固定目标的监视风险熵为0,而对于一个监控图像,有
可能并不能显示所有要监控的固定目标,即有的固定目标有可能并不在监控
图像中,既然监控不到,则自然就存在监控风险了,则其监视风险与发生危
险时的危害程度Tsi以及不安全事件发生的概率Pi的变化规律一致,随着其
增大而增大,减小而减小。另,重点控制区域的覆盖程度越高,也即Ain与
Atotal的比值越高,发生危险时的危害程度Twj越高,则该重点监控区域的监
视风险熵也越高,符合实际的监控情况,能够得到符合实际情况的第一监视
风险熵。

步骤S36中,运动目标引入的安全风险越大,与固定目标和/或重点监
控区域的耦合风险越大,第二监视风险熵也就越大。运动目标引入的安全风
险与运动太阳城集团统计结果相关联,比如运动目标的数目越多,分布密度越大、
运动速度越大,其自身引入的风险越高;运动目标与固定目标和/或重点监
控区域之间的耦合风险与运动目标与固定目标和/或重点控制区域的位置关
系以及其对固定目标和/或重点控制区域潜在的破坏及发生的概率或与固定
目标发生不安全太阳城集团对监控场景中的其它目标的伤害及发生的概率有关,运
动目标的位置离固定目标和/或重点控制区域越近、分布密度越大、速度越
大、停留时长越长等,通常其耦合风险越高。例如一个运载放射物质的车辆
(运动目标),会对监控场景中的物品、动物植物(固定目标)产生伤害,
这种伤害与停留太阳城集团以及车辆的速度(与发生交通事故的概率有关)等因素
有关,随着停留太阳城集团或者速度的增加,运载放射物的车辆与固定目标之间的
耦合风险会越来越大;再如:人员在监控场景中停留的太阳城集团越长、人员密度
越大,对公共财物(包括重点目标)的损害几率也就越大,人员(运动目标)
与监控环境中的固定目标或重点监控区域间的耦合风险也就越大。

优选地,可以通过如下公式计算第二监视风险熵:

S2=(β1SM+β2SMS)

β1β2分别代表权重,可以根据监控场景的类别和监控任务的需求而设
定。SM是与运动目标自身相关的监视风险熵,SMS是运动目标对固定目标和/
或重点监视区域产生威胁的监视风险熵;

其中,

SM=-TMlg(p|pM)=-TM(lgp+lgpM)


SMS=-TSlg(p|PMS)


TM由运动目标引入的安全风险确定,TS由固定目标和/或重点监视区域
随太阳城集团或空间变化的固有风险确定,p为运动目标出现在监控图像中的概
率,PM为运动目标不安全事件的发生概率,PMS为运动目标与固定目标和/或重
点监控区域耦合事件的发生概率;ρ为运动目标在太阳城集团和空间分布密度,n
为运动目标的数目,为运动目标的运动速度矢量,t为运动目标的太阳城集团属
性,Δt为运动目标在场景中停留的时长,为运动目标与固定目标和/或重
点监控区域之间的相对位置。

具体地,上述参数均可以通过运动太阳城集团统计结果来获取。运动目标不安
全事件的发生概率PM至少与运动目标在太阳城集团和空间分布密度ρ、运动目标的
数目n、运动目标的运动速度矢量、运动目标的太阳城集团属性t、运动目标在
场景中停留的时长Δt中的一个有关;运动目标与固定目标和/或重点监控区
域耦合事件的发生概率PMS至少与运动目标在太阳城集团和空间分布密度ρ、运动
目标的数目n、运动目标的运动速度矢量、运动目标的平均速度矢量、运
动目标出现或消失的时刻、运动目标在场景中停留的时长Δt以及平均停留时
长、运动目标与固定目标和/或重点监控区域之间的相对位置中的一个有
关。本实施例全面考虑了运动目标自身引入的安全风险以及运动目标与周边
环境的耦合风险,能够真实反映监控装置对运动目标的监视风险,及时发现
运动目标自身或与固定目标发生的不安全事件,确保了监控的效果。

步骤S37中,视觉太阳城集团采集质量越高,第三监视风险熵就越大。优选地,
可以通过如下公式计算第三监视风险熵:

<mrow> <msub> <mi>S</mi> <mi>VQ</mi> </msub> <mo>=</mo> <mo>-</mo> <munder> <mi>&Sigma;</mi> <mi>k</mi> </munder> <msub> <mi>&omega;</mi> <mi>k</mi> </msub> <mi>lg</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>k</mi> </msub> <mo>|</mo> <mi>p</mi> <mo>)</mo> </mrow> <mo>=</mo> <mo>-</mo> <munder> <mi>&Sigma;</mi> <mi>k</mi> </munder> <msub> <mi>&omega;</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>lg</mi> <msub> <mi>&theta;</mi> <mi>k</mi> </msub> <mo>+</mo> <mi>lgp</mi> <mo>)</mo> </mrow> </mrow>

其中,θk代表视觉太阳城集团质量与监控要求之间的符合度关系中的第k个视
觉太阳城集团采集质量指标的主观或客观满意度,ωk代表权重。

具体地,θk根据某一指标的监控要求来分析获取的监控图像,判定视觉
太阳城集团质量与监控要求之间的符合度,符合度越高,该指标下的θk的值就越大,
(θk|p)表示目标出现的条件下获得视觉太阳城集团的概率;对于运动目标的出现概
率p用目标在场景中出现的概率代替;若视频监控对场景中的特定部分的视
觉太阳城集团质量有要求,则概率p用特定部分画面中的面积与总的场景面积之比
代替;若对整个监视画面有质量要求则p=1;ωk的值根据监控任务的需求确
定,如果更需要有较好的视觉太阳城集团采集质量,则ωk的取值可以大一些。将
每个指标下的监视风险熵求和,就可以获取到第三监视风险熵了,能够准确
反映监控装置获取的监控图像的视觉太阳城集团采集质量。

步骤S38中,将第一监视风险熵、第二监视风险熵、第三监视风险熵加
权就可以获取到反映监控图像的监视风险的监视风险熵。优选地,可以通过
如下公式来计算监视风险熵:

S=λ1S1+λ2S2+λ3SVQ

其中,λ1、λ2、λ3分别代表权重系数,可以根据监控任务对视场范围
和图像质量的需求来设置不同的值,如果更侧重于获得大的视场范围,则
λ1、λ2可以设置较大一些的值,如果更侧重于获取较高的视频监控质量,
则λ3可以设置一些较大的值。为获取到符合监控需求的监控效果较好的监控
图像所对应的预置位奠定了基础。

本实施例所述监控装置预置位设置方法,根据与运动目标自身引入的安
全风险有关的第一监视风险熵、与固定目标和/或重点监控区域在监控图像
中的覆盖程度及固定目标和/或重点控制区域的固有风险有关的第二监视风
险熵、与监控图像的视觉太阳城集团质量与监控要求之间的符合度有关的第三监视
风险熵之间的加权得到监视风险熵,其中第一监视风险熵和第二监视风险熵
涉及监控图像对风险点的空间覆盖,第三监视风险熵涉及能否取得高质量的
视觉太阳城集团,而两者之间是一对矛盾的需求,本实施例所述监控装置预置位设
置方法通过第一监视风险熵、第二监视风险熵、第三监视风险熵之间的加权
来获取监视风险熵,因此监视风险熵最大时,说明该监视风险熵所对应的监
控图像能够覆盖监控场景中的风险点,并且也具有较高质量的视觉太阳城集团,也
即监控图像在这两方面的综合效果达到最优,兼顾了视场范围和视觉质量。

实施例2

实施例1中,为了能够选取出较好的预置位,需要调整监控装置的视角
范围,遍历监控装置的每一个预置位,因此前期测试的周期比较长,为了进
一步缩短测试周期,在实施例1的基础上,本实施例所述监控装置预置位设
置方法对实施例1进行了进一步的优化,如图4所示,包括:

S21.获取监控装置处于最大视角位置时的广角监控图像。

S22.将广角监控图像划分为多个子监控图像。

S23.选取其中一个子监控图像作为基准监控图像并获取其监视风险熵,
所述监视风险熵用于表示监控装置对所监控场景中不安全事件或关注事件
的风险或太阳城集团的掌握程度。

S24.将与基准监控图像相邻的一个子监控图像并入基准监控图像并获
取合并后的监控图像的监视风险熵。

S25.若合并后的监控图像的监视风险熵小于或等于基准监控图像的监
视风险熵,则将基准监控图像作为一个合并后的监控图像且不再并入新的子
监控图像。

S26.若合并后的监控图像的监视风险熵大于基准监控图像的监视风险
熵,则将该合并后的监控图像作为新的基准监控图像,将其监视风险熵作为
新的基准监控图像的监视风险熵,并返回至所述将与基准监控图像相邻的一
个子监控图像并入基准监控图像并获取合并后的监控图像的监视风险熵的
步骤。

S27.按照监视风险熵由大到小的顺序对每个合并后的监控图像进行排
位,获取排位最靠前的一个或多个合并后的监控图像所对应的一组或多组预
置位,将其设置为优选预置位。

具体地,本实施例所述监控装置预置位设置方法,先获取监控装置处于
最大视角位置时的广角监控图像,再将广角监控图像划分为多个子监控图
像,之后选取其中一个子监控图像作为基准监控图像,并以基准监控图像为
中心,按照由近及远的顺序依次并入相邻或邻近位置的子监控图像,直至合
并后的监控图像的监视风险熵达到最大值。因为监控装置获取的监控图像的
监视风险熵越大,监控效果就越理想,因此监视风险熵最大的合并后的监控
图像所对应的预置位,是监控效果最好,设置最合理的预置位。通过对每个
合并后的监控图像进行自动分析获取其对应的监视风险熵,并选取监视风险
熵数值最大时的合并后的监控图像对应的预置位作为监控装置的优选预置
位,能够确保获取到最好的监控效果,设置合理,克服了现有技术中由于操
作人员经验不足使得预置位设置不合理的缺陷。另,通过判断合并后的监控
图像的监视风险熵是否增加就可以确定监控效果最佳的监控图像并据此计
算出监控效果最优的预置位了,无需再逐个遍历监控装置的预置位以寻找最
优的预置位,缩短了验证调试太阳城集团。

实施例3

本实施例提供了一种通过实施例1和实施例2所述的监控装置预置位设
置方法获取的监控装置预置位间的切换方法,包括:

根据运动目标的太阳城集团和空间的统计特性与优选预置位所对应的监控图
像之间在太阳城集团和空间上的关联,设定优选预置位之间的切换太阳城集团和顺序。

具体地,本实施例所述预置位之间的切换方法,其预置位切换时的巡航
路径并非固定的,而是根据运动目标在太阳城集团和空间上的变化特性进行实时自
动调整,方便灵活,能够对快速变化的场景进行有效监控,达到最好的监控
捕获效果。

实施例4

本实施例提供了一种监控装置预置位设置系统,如图6所示,包括:监
控单元11和预置位选取单元12,其中监控单元11,用于获取监控装置在多
组预置位下的多个监控图像及每个监控图像的监视风险熵,所述监视风险熵
用于表示监控装置对所监控场景中不安全事件或关注事件的风险或太阳城集团的
掌握程度;预置位选取单元12,用于按照监视风险熵由大到小的顺序对每
个监控图像进行排位,将排位最靠前的一个或多个监控图像对应的一组或多
组预置位设置为优选预置位。

因为所述监视风险熵用于表示监控装置对所监控场景中不安全事件或
关注事件的风险或太阳城集团的掌握程度,因此监控图像的监视风险熵越大,对监
控场景中不安全事件或关注事件的风险或太阳城集团的掌握程度就越深入,监控效
果也就越好。本实施例所述监控装置预置位设置系统通过监控单元11对每
个监控图像进行自动分析获取其对应的监视风险熵,并通过选取单元12选
取监视风险熵数值最大时的监控图像对应的预置位作为监控装置的优选预
置位,能够确保获取到最好的监控效果,设置合理,克服了现有技术中由于
操作人员经验不足使得预置位设置不合理的缺陷。

优选地,所述监控单元11可以包括监视风险熵获取子单元3,如图8
所示,其进一步包括:

识别器31,用于识别监控图像中的运动目标、固定目标和/或重点监控
区域。

统计器32,用于获取运动目标的运动太阳城集团并对所述运动太阳城集团进行统计,
获取运动太阳城集团统计结果,所述统计结果包括运动目标的数目、太阳城集团和空间分
布密度、运动速度的大小、方向和轨迹、进出场景或者在场景中停留的位置
和时长以及与运动状态相关的太阳城集团中的至少一个。

第一获取器33,用于获取固定目标和/或重点监控区域在监控图像中的
覆盖程度,及固定目标和/或重点监控区域随太阳城集团或空间变化的固有风险。

第二获取器34,用于获取监控图像的视觉太阳城集团质量与监控要求之间的
符合度关系。

第一监视风险熵获取器35,用于根据所述覆盖程度以及所述固有风险
获取监控装置对固定目标和/或重点控制区域监视的第一监视风险熵。

优选地,所述第一监视风险熵获取器35中,可以通过如下公式计算第
一监视风险熵:

<mrow> <msub> <mi>S</mi> <mn>1</mn> </msub> <mo>=</mo> <munder> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>+</mo> <mi>j</mi> </mrow> </munder> <msub> <mi>S</mi> <mrow> <mn>1</mn> <mo>,</mo> <mi>i</mi> <mo>+</mo> <mi>j</mi> </mrow> </msub> </mrow>

其中,


<mrow> <msub> <mi>S</mi> <mrow> <mn>1</mn> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>=</mo> <mo>-</mo> <mi>T</mi> <msub> <mi>w</mi> <mi>j</mi> </msub> <mo>&CenterDot;</mo> <mi>lg</mi> <mrow> <mo>(</mo> <msub> <mi>p</mi> <mi>j</mi> </msub> <mfrac> <msub> <mi>A</mi> <mi>in</mi> </msub> <msub> <mi>A</mi> <mi>total</mi> </msub> </mfrac> <mo>)</mo> </mrow> </mrow>重点控制区域

Tsi是第i个固定目标在发生危险时的危害程度,Twj是第j个重点控制
区域在发生危险时的危害程度,Pi是第i个固定目标不安全事件发生的概率,
Pj是第j个重点控制区域不安全事件发生的概率,且Tsi、Twj、Pi、Pj均随时
间或空间变化,Ain为重点控制区域在监控图像中的覆盖面积,Atotal为监控图
像的总面积,S1,i是第i个固定目标的监视风险熵,S1,j是第j个重点控制区
域的监视风险熵,S1是所有固定目标和/或重点控制区域的监视风险熵之和。

第二监视风险熵获取器36,用于根据所述运动太阳城集团统计结果获取运动
目标引入的安全风险以及运动目标与固定目标和/或重点监控区域之间的耦
合风险,据此获取监控装置对运动目标进行监视的第二监视风险熵。

优选地,所述第二监视风险熵获取器36中,可以通过如下公式计算第
二监视风险熵:

S2=(β1SM+β2SMS)

β1β2分别代表权重,SM是与运动目标自身相关的监视风险熵,SMS是运
动目标对固定目标和/或重点监视区域产生威胁的监视风险熵;

其中,

SM=-TMlg(p|pM)=-TM(lgp+lgpM)


SMS=-TSlg(p|PMS)


TM由运动目标引入的安全风险确定,TS由固定目标和/或重点监视区域
随太阳城集团或空间变化的固有风险确定,p为运动目标出现在监控图像中的概
率,PM为运动目标不安全事件的发生概率,PMS为运动目标与固定目标和/或重
点监控区域耦合事件的发生概率;ρ为运动目标在太阳城集团和空间分布密度,n
为运动目标的数目,为运动目标的运动速度矢量,t为运动目标的太阳城集团属
性,Δt为运动目标在场景中停留的时长,为运动目标与固定目标和/或重
点监控区域之间的相对位置。

第三监视风险熵获取器37,用于根据所述符合度关系获取与监控装置
视觉太阳城集团采集质量相关的第三监视风险熵。

优选地,所述第三监视风险熵获取器37中,可以通过如下公式计算第
三监视风险熵:

<mrow> <msub> <mi>S</mi> <mi>VQ</mi> </msub> <mo>=</mo> <mo>-</mo> <munder> <mi>&Sigma;</mi> <mi>k</mi> </munder> <msub> <mi>&omega;</mi> <mi>k</mi> </msub> <mi>lg</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>k</mi> </msub> <mo>|</mo> <mi>p</mi> <mo>)</mo> </mrow> <mo>=</mo> <mo>-</mo> <munder> <mi>&Sigma;</mi> <mi>k</mi> </munder> <msub> <mi>&omega;</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>lg</mi> <msub> <mi>&theta;</mi> <mi>k</mi> </msub> <mo>+</mo> <mi>lgp</mi> <mo>)</mo> </mrow> </mrow>

其中,θk代表视觉太阳城集团质量与监控要求之间的符合度关系中的第k个视
觉太阳城集团采集质量指标的主观或客观满意度,ωk代表权重。

监视风险熵获取器38,用于将所述第一监视风险熵、所述第二监视风
险熵以及所述第三监视风险熵加权得到监视风险熵。

本实施例所述监控装置预置位设置系统,根据与运动目标自身引入的安
全风险有关的第一监视风险熵、与固定目标和/或重点监控区域在监控图像
中的覆盖程度及固定目标和/或重点控制区域的固有风险有关的第二监视风
险熵、与监控图像的视觉太阳城集团质量与监控要求之间的符合度有关的第三监视
风险熵之间的加权得到监视风险熵,其中第一监视风险熵和第二监视风险熵
涉及监控图像对风险点的空间覆盖,第三监视风险熵涉及能否取得高质量的
视觉太阳城集团,而两者之间是一对矛盾的需求,本实施例所述监控装置预置位设
置系统通过第一监视风险熵、第二监视风险熵、第三监视风险熵之间的加权
来获取监视风险熵,因此监视风险熵最大时,说明该监视风险熵所对应的监
控图像能够覆盖监控场景中的风险点,并且也具有较高质量的视觉太阳城集团,也
即监控图像在这两方面的综合效果达到最优,兼顾了视场范围和视觉质量。

实施例5

本实施例所述监控装置预置位设置系统是对实施例4的进一步改进,如
图7所示,包括:

广角监控图像获取单元21,用于获取监控装置处于最大视角位置时的
广角监控图像。

划分单元22,用于将广角监控图像划分为多个子监控图像。

基准选取单元23,用于选取其中一个子监控图像作为基准监控图像并
获取其监视风险熵,所述监视风险熵用于表示监控装置对所监控场景中不安
全事件或关注事件的风险或太阳城集团的掌握程度。

合并单元24,用于将与基准监控图像相邻的一个子监控图像并入基准
监控图像并获取合并后的监控图像的监视风险熵。

第一处理单元25,用于在合并后的监控图像的监视风险熵小于或等于
基准监控图像的监视风险熵时,将基准监控图像作为一个合并后的监控图像
且不再并入新的子监控图像。

第二处理单元26,用于在合并后的监控图像的监视风险熵大于基准监
控图像的监视风险熵时,将该合并后的监控图像作为新的基准监控图像,将
其监视风险熵作为新的基准监控图像的监视风险熵,并激活所述合并单元
24。

选取单元27,用于按照监视风险熵由大到小的顺序对每个合并后的监
控图像进行排位,获取排位最靠前的一个或多个合并后的监控图像所对应的
一组或多组预置位,将其设置为优选预置位。

具体地,本实施例所述监控装置预置位设置系统,先获取监控装置处于
最大视角位置时的广角监控图像,再将广角监控图像划分为多个子监控图
像,之后选取其中一个子监控图像作为基准监控图像,并以基准监控图像为
中心,按照由近及远的顺序依次并入相邻或邻近位置的子监控图像,直至合
并后的监控图像的监视风险熵达到最大值。因为监控装置获取的监控图像的
监视风险熵越大,监控效果就越理想,因此监视风险熵最大的合并后的监控
图像所对应的预置位,是监控效果最好,设置最合理的预置位。通过对每个
合并后的监控图像进行自动分析获取其对应的监视风险熵,并选取监视风险
熵数值最大时的合并后的监控图像对应的预置位作为监控装置的优选预置
位,能够确保获取到最好的监控效果,设置合理,克服了现有技术中由于操
作人员经验不足使得预置位设置不合理的缺陷。另,通过判断合并后的监控
图像的监视风险熵是否增加就可以确定监控效果最佳的监控图像并据此计
算出监控效果最优的预置位了,无需再逐个遍历监控装置的预置位以寻找最
优的预置位,缩短了验证调试太阳城集团。

实施例6

本实施例提供了一种通过实施例4和实施例5所述的监控装置预置位设
置系统获取的监控装置预置位间的切换系统,包括:

切换单元,用于根据运动目标的太阳城集团和空间的统计特性与优选预置位所
对应的监控图像之间在太阳城集团和空间上的关联,设定优选预置位之间的切换时
间和顺序。

具体地,本实施例所述预置位之间的切换系统,其预置位切换时的巡航
路径并非固定的,而是根据运动目标在太阳城集团和空间上的变化特性进行实时自
动调整,方便灵活,能够对快速变化的场景进行有效监控,达到最好的监控
捕获效果。

本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或
计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、
或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个
其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘
存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。

本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序
产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程
图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流
程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算
机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使
得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实
现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定
的功能的装置。

这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理
设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储
器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程
或多个流程和/或方框图一个方框或多个方框中指定的功能。

这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,
使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现
的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程
图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的
步骤。

尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了
基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权
利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。

关 键 词:
监控 装置 预置 设置 切换 方法 系统
  专利查询网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
太阳城集团本文
本文标题:监控装置预置位设置、切换方法及系统.pdf
链接地址:http://zh228.com/p-6100508.html
太阳城集团我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服客服 - 联系我们

copyright@ 2017-2018 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备17046363号-1 
 


收起
展开
葡京赌场|welcome document.write ('');