太阳城集团

  • / 20
  • 下载费用:30 金币  

一种基于间歇性故障的大数据分析方法.pdf

摘要
申请专利号:

太阳城集团CN201611125753.0

申请日:

2016.12.08

公开号:

太阳城集团CN106814268A

公开日:

2017.06.09

当前法律状态:

实审

有效性:

审中

法律详情: 实质审查的生效IPC(主分类):G01R 31/00申请日:20161208|||公开
IPC分类号: G01R31/00 主分类号: G01R31/00
申请人: 国网浙江省电力公司; 浙江华云太阳城集团科技有限公司; 国家电网公司
发明人: 李熊; 徐川子; 唐健毅; 王炜; 胡若云; 郑松松; 陈理; 娄冰
地址: 310007 浙江省杭州市西湖区黄龙路8号
优先权:
专利代理机构: 浙江翔隆专利事务所(普通合伙) 33206 代理人: 张文燕
PDF完整版下载: PDF下载
法律状态
申请(专利)号:

CN201611125753.0

授权太阳城集团号:

|||

法律状态太阳城集团日:

太阳城集团2017.09.22|||2017.06.09

法律状态类型:

实质审查的生效|||公开

摘要

太阳城集团本发明公开了一种基于间歇性故障的大数据分析方法,属于电力设备技术领域。现有技术中异常紧急程度判断主要依靠人的经验和主观估算来进行派单处理,这种方法存在很大的不科学性和随意性,导致派工的浪费,耽误正常的派工,现在缺少一种科学、合理、准确的大数据分析方案。本发明首先确定采集异常紧急度的影响因子,影响因子包括间歇性故障。数据包括现场采集数据和工单流转数据,进而对大批量用户的用电量进行波动分析。分析影响因子并建立模型,把复杂的问题,系统化,层级化,简单化,提供一种切实可行的技术方案,识别区分影响因子,对紧急度有影响的纳入紧急度计算模型,否之,不纳入,避免派工的浪费。

权利要求书

1.一种基于间歇性故障的大数据分析方法,其特征在于,包括以下步骤:
第一步,初步确定采集异常紧急度的影响因子
由电力运维系统专家讨论确定采集异常紧急度的影响因子,所述影响因子包括间歇性
故障;
第二步,收集电路运行系统的数据
所述数据包括现场采集数据和工单流转数据,涉及到多个区域的各种用户的一段太阳城集团
内的用电量、电能表的品牌、数量,进而对大批量用户的用电量进行波动分析;
第三步,分析影响因子并建立模型
紧急度影响因子判断模型就是通过系统已有运行数据,按照各因素影响进行数据分
析,当结果表明影响因子与最终结果存在明显聚合关系或函数连续时则表明应该将该因数
计入紧急度计算,当结果为离散不连续时则表明不应该将该因数计入紧急度计算。
2.如权利要求1所述的一种基于间歇性故障的大数据分析方法,其特征在于,按照不同
的分类统计方法,分析各种电能表故障率是否具有离散特性,如果各种电能表故障率具有
离散型,该因素不作为紧急度值输出的影响因素,反之,该因素作为紧急度值输出的影响因
素。
3.如权利要求2所述的一种基于间歇性故障的大数据分析方法,其特征在于,对抄表数
据情况进行定量分析:1代表抄表成功,0代表抄表失败,其抄表数据的组合为101...、
1001...、10001....。
4.如权利要求3所述的一种基于间歇性故障的大数据分析方法,其特征在于,按照集中
器类型、地域、集中器的厂家分别进行统计故障电能表数量、电能表数量。
5.如权利要求4所述的一种基于间歇性故障的大数据分析方法,其特征在于,计算同一
集中器类型,不同地域的电能表故障率;计算同一集中器类型,不同生产厂家的电能表故障
率,计算同一类型集中器出现间歇故障的表计采集故障率的平均值以及表征组内个体间的
离散程度的标准偏差值。
6.如权利要求5所述的一种基于间歇性故障的大数据分析方法,其特征在于,所述故障
率按照地域进行统计,分析不同类型的集中器时,需要参考台区线路分支数量、延伸地域面
积、现场用电环境以及线型。
7.如权利要求6所述的一种基于间歇性故障的大数据分析方法,其特征在于,所述影响
因子还包括月平均用电量、异常持续太阳城集团、距离抄表天数、电能表效用值。
8.如权利要求7所述的一种基于间歇性故障的大数据分析方法,其特征在于,分析月均
用电量对采集异常紧急程度的影响程度,直接用用户的月用电量作为输入,会导致该因素
的影响波动过大,因此需要将用户月用电量按一定区间进行划分;将台区根据容量分布进
行分类,并统计某一年度台区公变用电量及相应容量公变下居民、非居民电量情况,观察当
用户电量缺失时,是否会引起台区线损波动。
9.如权利要求8所述的一种基于间歇性故障的大数据分析方法,其特征在于,对每户每
日用电量标准偏差度进行分析,分析用户的日用电量波动是否平缓,如果大部分用户的日
用电量波动平缓则可将异常持续天数所损失的电量作为紧急程度计算因子,如果大部分用
户的日用电量波动较大则不能将异常持续天数所损失的电量作为紧急程度计算因子。
10.如权利要求9所述的一种基于间歇性故障的大数据分析方法,其特征在于,抄表例
日的抄表数据在一个月当中最为重要,该日数据缺失将导致人工抄表,计算人工抄表的成
本,如果成本较高,则需要把距离抄表日天数作为影响紧急度的影响因子,如果成本较低,
则不需要。

说明书

一种基于间歇性故障的大数据分析方法

技术领域

本发明涉及一种基于间歇性故障的大数据分析方法,属于电力设备技术领域。

背景技术

当前在全国范围,电力的采集系统所产生的故障基本都超出当地运维力量,各地
方局也是对其管理范围内的采集系统正常工作设备总有效率进行考核,无法保证全部设备
都能有效采集数据。目前系统运维工作管理处于粗放阶段,存在资源使用不合理,无法快速
准确判定各异常点的紧急程度,导致一些紧急的异常情况无法及时解决,进而更严重的情
况出现。异常紧急程度判断主要依靠人的经验和主观估算来进行派单处理,这种方法存在
很大的不科学性和随意性。在实际运维过程中,对一些故障派工后,过段太阳城集团,故障却自动
恢复,导致派工的浪费,耽误正常的派工,现在缺少一种科学、合理、准确的大数据分析方
案。针对目前现有技术中存在的上述缺陷,实有必要进行研发,解决现有技术中存在的缺
陷。

发明内容

针对现有技术的缺陷,本发明的目的在于提供一种科学、合理、准确的基于间歇性
故障的大数据分析方法,能够区分自动恢复故障,避免派工浪费,更为科学和准确的判定各
异常点的紧急程度,为后续的精准派工提供基础,使得资源更为合理的利用。

为实现上述目的,本发明的技术方案为:

一种基于间歇性故障的大数据分析方法,包括以下步骤:

第一步,初步确定采集异常紧急度的影响因子

由电力运维系统专家讨论确定采集异常紧急度的影响因子,所述影响因子包括间
歇性故障。

第二步,收集电路运行系统的数据

所述数据包括现场采集数据和工单流转数据,涉及到多个区域的各种用户的一段
太阳城集团内的用电量、电能表的品牌、数量,进而对大批量用户的用电量进行波动分析。

第三步,分析影响因子并建立模型

紧急度影响因子判断模型就是通过系统已有运行数据,按照各因素影响进行数据
分析,当结果表明影响因子与最终结果存在明显聚合关系或函数连续时则表明应该将该因
数计入紧急度计算,当结果为离散不连续时则表明不应该将该因数计入紧急度计算。

一方面由于不同区域对采集系统具体要求存在差异,另外一方面采集异常紧急度
影响因子很多,因此各区域需要根据其实际情况进行判断各个影响因子是否应该计入紧急
度计算。本发明对间歇性故障进行分析把复杂的问题,系统化,层级化,简单化,提供一种切
实可行的技术方案,识别区分影响因子,对紧急度有影响的纳入紧急度计算模型,否之,不
纳入,避免派工的浪费。

进一步地,按照不同的分类统计方法,分析各种电能表故障率是否具有离散特性,
如果各种电能表故障率具有离散型,该因素不作为紧急度值输出的影响因素,反之,该因素
作为紧急度值输出的影响因素。

进一步地,对抄表数据情况进行定量分析:1代表抄表成功,0代表抄表失败,其抄
表数据的组合为101...、1001...、10001....。

进一步地,按照集中器类型、地域、集中器的厂家分别进行统计故障电能表数量、
电能表数量。

进一步地,计算同一集中器类型,不同地域的电能表故障率;计算同一集中器类
型,不同生产厂家的电能表故障率,计算同一类型集中器出现间歇故障的表计采集故障率
的平均值以及表征组内个体间的离散程度的标准偏差值。

进一步地,所述故障率按照地域进行统计,分析不同类型的集中器时,需要参考台
区线路分支数量、延伸地域面积、现场用电环境以及线型。

进一步,所述影响因子还包括月平均用电量、异常持续太阳城集团、距离抄表天数、电能
表效用值。

进一步,分析月均用电量对采集异常紧急程度的影响程度,直接用用户的月用电
量作为输入,会导致该因素的影响波动过大,因此需要将用户月用电量按一定区间进行划
分;将台区根据容量分布进行分类,并统计某一年度台区公变用电量及相应容量公变下居
民、非居民电量情况,观察当用户电量缺失时,是否会引起台区线损波动。

进一步,对每户每日用电量标准偏差度进行分析,分析用户的日用电量波动是否
平缓,如果大部分用户的日用电量波动平缓则可将异常持续天数所损失的电量作为紧急程
度计算因子,如果大部分用户的日用电量波动较大则不能将异常持续天数所损失的电量作
为紧急程度计算因子。

进一步,抄表例日的抄表数据在一个月当中最为重要,该日数据缺失将导致人工
抄表,计算人工抄表的成本,如果成本较高,则需要把距离抄表日天数作为影响紧急度的影
响因子,如果成本较低,则不需要。

与现有技术相比,本发明具有以下有益效果:

本发明把复杂的问题,系统化,层级化,简单化,提供一种切实可行的技术方案,识
别区分影响因子,对紧急度有影响的纳入紧急度计算模型,否之,不纳入,避免派工的浪费。

本发明提供一种科学、合理、准确的大数据分析方法,能够区分自动恢复故障,避
免派工浪费,更为科学和准确的判定各异常点的紧急程度,为后续的精准派工提供基础,使
得资源更为合理的利用。

附图说明

图1为本发明影响因子分析流程图;

图2为本发明公变容量分类及公变用电量、公变下居民、非居民电量情况;

图3为本发明相应公变容量下居民、非居民(单、三相)电量情况;

图4为本发明公变下单户居民、非居民电量缺失引起的线损波动率数据表;

图5为本发明公变下单户居民、非居民电量缺失引起的线损波动率折线图;

图6为本发明低压居民用户日用电量标准偏差曲线图;

图7为本发明低压非居民用户日用电量标准偏差曲线图;

图8为本发明持续N天无抄电能表数据的电能表数量分布统计表;

图9为本发明持续N天无抄电能表数据的电能表数分布图

图10为本发明发生间歇性故障的表计按地区分类统计表(I型集中器);

图11为本发明发生间歇性故障的表计按地区分类统计图(I型集中器);

图12为本发明发生间歇性故障的用户按地区分类统计表(II型集中器);

图13为本发明发生间歇性故障的用户按地区分类统计表(II型集中器);

图14为本发明发生间歇性故障的用户按电能表厂家分类统计表(I型集中器);

图15为本发明发生间歇性故障的用户按集中器厂家分类统计表(I型集中器);

图16为本发明发生间歇性故障的用户按电能表厂家分类统计表(II型集中器);

图17为本发明发生间歇性故障的用户按集中器厂家分类统计表(II型集中器);

图18为本发明发生间歇性故障的I型集中器各故障类型统计表;

图19为本发明发生间歇性故障的I型集中器各故障类型统计图;

图20为本发明发生间歇性故障的II型集中器各故障类型统计表;

图21为本发明不同故障类型影响的故障电能表数及处理时长统计表;

图22为本发明不同故障类型影响的故障电能表数及处理时长统计图;

图23为本发明II型采集器挂接电能表数量分布统计;

图24为本发明II型采集器挂接电能表数量分布图。

具体实施方式

为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对
本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并
不用于限定本发明。

相反,本发明涵盖任何由权利要求定义的在本发明的精髓和范围上做的替代、修
改、等效方法以及方案。进一步,为了使公众对本发明有更好的了解,在下文对本发明的细
节描述中,详尽描述了一些特定的细节部分。对本领域技术人员来说没有这些细节部分的
描述也可以完全理解本发明。

一种基于间歇性故障的大数据分析方法,包括以下步骤:

第一步,初步确定采集异常紧急度的影响因子

由电力运维系统专家讨论确定采集异常紧急度的影响因子,所述影响因子包括间
歇性故障;

第二步,收集电路运行系统的数据

所述数据包括现场采集数据和工单流转数据,涉及到多个区域的各种用户的一段
太阳城集团内的用电量、电能表的品牌、数量,进而对大批量用户的用电量进行波动分析;

第三步,分析影响因子并建立模型

如图1所示,紧急度影响因子判断模型就是通过系统已有运行数据,按照各因素影
响进行数据分析,当结果表明影响因子与最终结果存在明显聚合关系或函数连续时则表明
应该将该因数计入紧急度计算,当结果为离散不连续时则表明不应该将该因数计入紧急度
计算。

建立间歇性故障的计算模型

按照不同的分类统计方法,分析各种电能表故障率是否具有离散特性,如果各种
电能表故障率具有离散型,该因素不作为紧急度值输出的影响因素,反之,该因素作为紧急
度值输出的影响因素。

按照集中器类型、地域、集中器的厂家分别进行统计故障电能表数量、电能表数
量。计算同一集中器类型,不同地域的电能表故障率;计算同一集中器类型,不同生产厂家
的电能表故障率,计算同一类型集中器出现间歇故障的表计采集故障率的平均值以及表征
组内个体间的离散程度的标准偏差值。所述故障率按照地域进行统计,分析不同类型的集
中器时,需要参考台区线路分支数量、延伸地域面积、现场用电环境以及线型。

在优化采集运维闭环管理系统的研讨会和基层调研过程发现,目前存在抄表数据
时有时无的间歇性现象,即对单个表计来说采集失败但无须人工介入可自行恢复的现象较
为明显。对抄表数据情况进行定量分析:1代表抄表成功,0代表抄表失败,其抄表数据的组
合为101...、1001...、10001....。该类故障用户一个月内反复出现现象为101...、
1001...、10001....、100001....的组合情况。

收集某一月份,某区域24907294户低压用户全月抄表数据为分析样本,即一个月
内至少出现三次及以上101...、1001...、10001....、100001....组合情况的用户按照集中
器类型、地域进行统计。

如图10-11所示,对数据进行计算分析:I型集中器出现间歇性故障的表计采集故
障率平均值为5.49%,表征组内个体间的离散程度的标准偏差值为0.0107。

同样的,针对某一月份出现的间歇性故障的II型集中器下的单个表计采集故障率
按地域进行统计,

如图12-13所示,对数据进行计算分析分析:II型集中器出现间歇性故障的表计采
集故障率平均值为2.73%,表征组内个体间的离散程度的标准偏差值为0.0071。

根据图10-13可知,分析不同类型的集中器时,需要参考台区线路分支数量、延伸
地域面积、现场用电环境以及线型。I型集中器出现间歇性故障的表计采集故障率明显高于
II型集中器,主要原因为低压台区线路分支多、延伸地域广、现场用电环境复杂等,导致低
压电力线载波通信不稳定,而II型集中器下行通信主要是RS485双绞线通信,因此更为稳
定,但对于同一类型集中器,间歇性故障发生比率较为稳定。

继续针对一个月出现3次、5次、6次及7次间歇性故障的I型集中器下的用户清单按
电能表厂家进行统计,发现故障主要集中于深圳市航天泰瑞捷电子有限公司、深圳科陆、杭
州海兴、杭州西力、浙江万胜,但这五个电能表厂家的安装数量也很大,进一步计算了这五
个电能表厂家发生故障比率,基本在0.227%左右,如图14所示。

同理,我们对终端厂家也进行了统计,发现故障主要集中于江苏光一、杭州炬华科
技、创维、江苏林洋电子股份有限公司、青岛高科通信股份有限公司,同样,这五个终端厂家
的安装数量也很大,进一步计算了这五个终端厂家的发生故障比率,基本在0.247%左右,
如图15所示。

针对一个月出现4次、5次、6次及7次间歇性故障的II型集中器下的用户清单按电
能表进行统计,发现故障主要集中于电能表厂家为杭州海兴、德力西、浙江正泰、杭州西力、
浙江万胜,但这五个电能表厂家的安装数量也很大,进一步计算了这五个电能表厂家发生
故障比率,基本在0.061%左右,如图16所示。

同理,我们对终端厂家也进行了统计,发现故障主要集中于八达、江苏林洋电子股
份有限公司、杭州炬华科技、杭州炬华科、江苏光一技,同样,这五个终端厂家的安装数量也
很大,进一步计算了这五个终端厂家发生故障比率,基本在0.055%左右,如图17所示。

从上述数据可以看出,间歇性故障没有呈现聚集性效应(如按表计厂家、终端厂
家、分布地区、集中器类型等),均存在一定的离散特性。

继续对出现各故障的类型(101...、1001...、10001...、100001...)数量及比例进
行统计。如图18-20所示,无论是I型集中器还是II型集中器,一个月出现3次及以上间歇性
故障的集中器故障类型主要集中在101、1001这两种类型上,三天内自动恢复的间歇性故障
占间歇性故障总数量的90%以上。

间歇性故障没有呈现聚集性效应(如表计厂家、终端厂家、终端类型、地区分布
等),存在一定的离散特性,且三天内自动恢复的间歇性故障占比90%以上,因此采集运维
闭环管理中的故障处理时限并不能表征故障处理的难易程度,故该因素不作为紧急度值输
出的影响因子。

影响因子还包括:月平均用电量、异常持续太阳城集团、距离抄表天数、电能表效用值。

建立月均用电量的计算模型

分析月均用电量对采集异常紧急程度的影响程度,直接用用户的月用电量作为输
入,会导致该因素的影响波动过大,因此需要将用户月用电量按一定区间进行划分。将台区
根据容量分布进行分类,并统计某一年度台区公变用电量及相应容量公变下居民、非居民
(单相、三相)电量情况。

具体统计分析过程如下所述,将某一区域242402个台区根据容量分布进行分类,
并统计某一年度台区公变用电量及相应容量公变下居民、非居民(单相、三相)电量情况。

如图2-3所示,以250千伏安及以下居民用户电量为100千瓦时左右,315千伏安及
以上单相用户是其2倍左右,250千伏安及以下非居民三相表是其3倍左右,315千伏安及以
上非居民三相表是其10倍左右。

如果仅使用电量作为紧急度值的单位,最后计算出的数值比较大,需要进行换算,
根据用户实际月用电量确定该用户处于统计数据的具体分布区间,最终确定该用户为N个
标准用电户。

由图4-5可知,当一个单相用户电量缺失时,将引起台区线损波动在0.6%-0.7%,
当一个非居三相用户电量缺失时,将引起台区线损波动在3.5%左右。因此,月均用电量能
够作为影响紧急度的影响因子。

以居民用户和非居民单相表用户月用电量为标准户电量分界点(小于等于200千
瓦时)为1户标准户,(大于200千瓦时且小于等于1000千瓦时)为2户标准户,(大于1000千瓦
时)为3户标准户。

用户实际月用电量等同的标准户数r(xi):


g(xi)为指定用户当前月的用电量,Xi为第i个电能表的用户。

建立异常持续天数的计算模型

对每户每日用电量标准偏差度进行分析,分析用户的日用电量波动是否平缓,如
果大部分用户的日用电量波动平缓则可将异常持续天数所损失的电量作为紧急程度计算
因子,如果大部分用户的日用电量波动较大则不能将异常持续天数所损失的电量作为紧急
程度计算因子。

收集某一月份10000户居民和非居民的日用电量数据,计算每日用电量标准偏差,
并从小到大排列,得出曲线图如图6所示。确定其电量标准偏差值小于17的用户数占总数的
92%,是标准偏差曲线图的拐点。

同样的,在某一区域随即挑选10000户非居民,计算每日用电量标准偏差,并从小
到大排列,得出曲线图如图7所示。确定其电量标准偏差值小于17的用户数占总数的
88.75%,是标准偏差曲线图的拐点。

由图6和图7可知,认定90%左右的用户日均电量波动小,因此,异常持续天数能够
作为影响紧急度的影响因子。

本发明以一个月之内的日平均电量作为故障天数造成的单日损失监控电量。异常
持续天数所损失的电量=异常持续天数乘以指定用户当前月的平均日用电量,指定用户当
前月的用电量需要参考该用户上一年同月份用电量、上一个月用电量和前三日用电量。

计算公式如下:


为更为精确的预估指定用户的月用电量,增加农历公历、历年温度湿度影响、本用
户年度同比增长用电量等的影响因数。

异常持续太阳城集团的紧急度值公式如下:


建立距离抄表日天数的计算模型

抄表例日的抄表数据在一个月当中最为重要,该日数据缺失将导致人工抄表,使
得成本提高。距离下一抄表日越近,异常处理紧急度越高。因此,需要把距离抄表日天数作
为影响紧急度的影响因子。

统计持续N天无抄表数据的电能表数分布情况,分析故障电表与持续天数的关系,
确定能够处理绝大多数故障电表的天数M。采用断面统计方式对数据进行统计,统计某一段
太阳城集团内仍未恢复的异常电能表,记录持续N天无抄表数据的电能表数分布情况。

从图8-9中可以看出持续2天至8天的故障电表用户占总故障用户数的59.06%,将
近60%,持续9天至21天无抄电能表数据的用户占总故障用户数的30.72%,将近30%,持续
22天及以上占比10.22%,将近10%。

从分析数据看出,将近60%的采集异常在8天太阳城集团内都会被处理,所以选择8天作
为阈值,距离天数超过阀值的该因数影响为0,距离天数在阀值内越小处理紧急度值越大。

距离抄表日天数异常处理紧急度计算模型如下:


建立终端下挂接电能表效用值的计算模型

对目前采集系统内某一太阳城集团段产生的全部采集异常影响的故障数及处理时长统
计分析。

如图21-22所示,存在问题一:一个故障类型影响的电能表数越多,则处理优先级
越高,故障处理效益排序应该为:I型集中器下全无数据>I型终端与主站无通信>II型集
中器全无数据>II型终端与主站无通信>采集器下电表全无数据>N天无抄电能表数据,
按照处理紧急程度递减排列,原理上处理时限应递增,但在I型集中器与主站无通讯和N天
无数据两类异常出现了平均处理时限下降明显的趋势,说明存在问题。

存在问题二:II型采集器下电能表下挂接电表分布比例

如图23-24所示,可以看出II型采集器只挂载1块电能表的情况占了94.91%。根据
数据结果进行调查分析,由于基层单位并不了解该类型计算的是挂接2块电能表及以上的
II型采集器异常,盲目的认为II型采集器挂接电能表绝大多数是1块电能表,导致检修积极
性不高。在运维时输出效用值需要考虑挂载故障电能表数,而不仅仅是终端下挂接电能表
数,否则不能达到运维效用的最大化。

综上分析,需要把终端下挂接电能表数量效用值作为影响紧急度的影响因子,系
统可通过分析各个处理工单下所有故障电表的效用值总和来判断其优先级,总体效用值模
型如下:

Y(紧急度值)=∑f(xi)(i表示归集后的第1......n的电能表)

Xi为第i个电能表的用户,f(xi)表示第i个电能表用户紧急度

建立总的采集异常紧急程度计算模型

通过对现有收集的采集异常紧急程度影响因子分析,对于单个表计紧急度值来
说,目前主要有“距离抄表天数”、“异常持续太阳城集团”和“月平均用电量”、“电能表效用值”四方
面影响,和“间歇性故障”不发生直接关系,故该因素不考虑。异常工单的紧急度值是该工单
所包含的故障电表紧急度值的累加。总的采集异常紧急程度计算模型为:

Y(紧急度值)=∑f(xi)(i表示归集后的第1......n的电能表)

f(xi)=j(xi)+s(xi),其中:





由此得到单表的总紧急度值,用于指导异常处理的先后次序,能够使得日常采集
运维工作有的放矢,达到事半功倍的效果。

根据计算模型,确定异常处理的先后次序,对电路运行系统进行维护。

以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精
神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

关 键 词:
一种 基于 间歇性 故障 数据 分析 方法
  专利查询网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
太阳城集团本文
本文标题:一种基于间歇性故障的大数据分析方法.pdf
链接地址:http://zh228.com/p-6019691.html
太阳城集团我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服客服 - 联系我们

copyright@ 2017-2018 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备17046363号-1 
 


收起
展开
葡京赌场|welcome document.write ('');