太阳城集团

  • / 11
  • 下载费用:30 金币  

一种自适应GPU统一染色阵列任务负载均衡方法.pdf

摘要
申请专利号:

CN201611139602.0

申请日:

2016.12.12

公开号:

CN106776023A

公开日:

2017.05.31

当前法律状态:

实审

有效性:

审中

法律详情: 实质审查的生效IPC(主分类):G06F 9/50申请日:20161212|||公开
IPC分类号: G06F9/50 主分类号: G06F9/50
申请人: 中国航空工业集团公司西安航空计算技术研究所
发明人: 韩立敏; 田泽; 郑新建; 任向隆; 张骏; 许宏杰
地址: 710000 陕西省西安市锦业二路15号
优先权:
专利代理机构: 中国航空专利中心 11008 代理人: 杜永保
PDF完整版下载: PDF下载
法律状态
申请(专利)号:

太阳城集团CN201611139602.0

授权太阳城集团号:

|||

法律状态太阳城集团日:

2017.06.23|||2017.05.31

法律状态类型:

太阳城集团实质审查的生效|||公开

摘要

本发明属于图形处理器设计领域,公开了一种自适应GPU统一染色阵列任务负载均衡方法,包括:步骤1、实时统计GPU统一染色阵列n个统一染色核心(unified??shading??core)的负载状态;步骤2、根据负载状态判定GPU统一染色阵列是否需要执行资源分配操作;步骤3、选择资源分配方案;步骤4、依据资源分配方案实施资源分配与映射。

权利要求书

1.一种自适应GPU统一染色阵列任务负载均衡方法,其特征在于,包括:
步骤1、实时产生GPU统一染色阵列的两种负载状态标识,以n个统一染色核心的当前状
态和任务类型为输入,根据设定的算法产生两种负载状态标识:idle vertex core(空闲顶
点核心),idle pixel core(空闲像素核心),将两种负载状态标识输出到步骤2;
步骤2、判定是否需要执行资源分配操作,将步骤1实时统计的GPU统一染色阵列的两种
负载状态idle vertex core,idle pixel core为输入,依据预设的判定算法产生是否需要
执行资源分配操作的判定标志,将判定标志和两种负载状态输出到步骤3;
步骤3、选择资源分配方案,依据步骤2输出的判定标志和两种负载状态idle vertex
core,idle pixel core作为输入,如果需要执行资源分配,则使用设定的算法判定系统性
能瓶颈的类型,根据性能瓶颈的类型选择资源分配方案,将资源分配方案输出到步骤4,否
则,结束流程;
步骤4、实施资源分配与映射,以步骤3输出的资源分配方案作为控制条件,使用宽度优
先的空闲统一染色核心查询算法选择1个空闲的core,将统一染色核心分配给指定的染色
任务。
2.如权利要求1所述的一种自适应GPU统一染色阵列任务负载均衡方法,其特征在于,n
的取值为2-80的整数。
3.如权利要求1所述的一种自适应GPU统一染色阵列任务负载均衡方法,其特征在于,
步骤1中所述设定的算法具体为:
Idle vertex core:每个统一染色核心的状态包括:当前状态(idle\busy),任务类型
(vertex\Pixel);当某个核心的状态为idle&vertex,则该核心为空闲vertex核心;该核心
对应的标志位被置为1,根据n个核心标志位的值产生2bit的Idle vertex core;当n个统一
染色核心的标识位全部为0,Idle vertex core为00,00表示GPU存在0个vertex类型的空闲
统一染色核心;当n个统一染色核心的标识位有1个为1,Idle vertex core为01,01表示GPU
存在1个vertex类型的空闲统一染色核心;当n个统一染色核心的标识位既不是全部为0并
且不是只有1个统一染色核心的标识位为1,Idle vertex core为10,10表示GPU存在2个及
以上vertex类型的空闲统一染色核心;Idle vertex core为11无意义;
Idle pixel core:当某个统一染色核心的状态为idle&pixel,则该统一染色核心为空
闲pixel core;该统一染色核心对应的标志位被置为1,根据n个统一染色核心标志位的值
产生2bit的Idle pixel core;当n个统一染色核心的标识位全部为0,Idle pixel core为
00,00表示GPU存在0个pixel类型的空闲统一染色核心;当n个统一染色核心的标识位有1个
为1,Idle pixel core为01,01表示GPU存在1个pixel类型的空闲统一染色核心;当n个统一
染色核心的标识位既不是全部为0并且不是只有1个统一染色核心的标识位为1,Idle
pixel core为10,10表示GPU存在2个及以上pixel类型的空闲统一染色核心;Idlepixel
core为11无意义。
4.如权利要求1所述的一种自适应GPU统一染色阵列任务负载均衡方法,其特征在于,
步骤2中所述预设的判定算法具体为:
以负载状态标识Idle vertex core和Idle pixel core为输入,当Idle vertex core
不为00,并且Idle pixel core不为00,说明系统不存在性能瓶颈,不执行负载均衡操作,否
则,资源映射与分配单元可能需要执行资源分配操作。
5.如权利要求1所述的一种自适应GPU统一染色阵列任务负载均衡方法,其特征在于,
步骤3中所述设定的算法具体为:
依据Idle vertex core和Idle pixel core的值,能够实施负载均衡操作的情况包括:
当Idle vertex core为00,存在0个空闲vertex核心,Idle pixel core为10,存在2个
及以上空闲pixel核,总体上系统存在2个及以上空闲统一染色核心,并且为pixel类型的,
说明pixel负载较vertex负载轻,资源分配方案:将1个空闲pixel core送给vertex任务;
当Idle vertex core为01,存在1个空闲vertex核心,Idle pixel core为0,存在0个空
闲pixel核心,总体上系统仅存在1个空闲统一染色核心,为了确保GPU流水线的通畅性,将
该空闲统一染色核心给pixel任务使用,资源分配方案:将1个空闲vertex core送给pixel
任务;
当Idle vertex core为10,存在2个及以上空闲vertex核心,Idle pixel core为0,存
在0个空闲pixel核心,总体上系统存在“2个及以上”的空闲统一染色核心,说明vertex负载
较pixel负载轻,将1个空闲统一染色核心送给pixel任务使用,资源分配方案:将1个空闲
vertex core送给pixel任务;
依据Idle vertex core和Idle pixel core的值,不实施负载均衡操作的情况包括:
当Idle vertex core不为0,并且Idle pixel core不为0,系统处于负载均衡状态,不
执行资源分配与映射操作;当Idle vertex core为0,并且Idle pixel core为0,则系统无
法实施负载均衡,无需执行资源分配与映射操作;
当Idle vertex core为0,并且Idle pixel core为01,系统仅存在1个空闲统一染色核
心,并且为pixel类型的,为了确保GPU流水线的通畅性,该空闲统一染色核心给pixel任务
使用。为了确保GPU流水线不进入死锁状态,不允许执行负载均衡,无需执行资源分配与映
射操作。
6.如权利要求1所述的一种自适应GPU统一染色阵列任务负载均衡方法,其特征在于,
步骤4中所述宽度优先的空闲统一染色核心查询算法具体为:
如果GPU统一染色阵列具m个SSC,每个SSC具有8个统一染色核心,m*8等于n,m个SSC优
先级从高到低依次为:SSC1,SSC2,SSC3,SSC4,SSC5,…,SSCm;n个统一染色核心的优先级顺
序从高到低依次为:SSC1的统一染色核心1,SSC2的统一染色核心1,SSC3的统一染色核心1,
SSC4的统一染色核心1,…,SSCm的统一染色核心1,SSC1的统一染色核心2,SSC2的统一染色
核心2,SSC3的统一染色核心2,SSC4的统一染色核心2,…,SSCm的统一染色核心2,…,SSC1
的统一染色核心8,SSC2的统一染色核心8,SSC3的统一染色核心8,SSC4的统一染色核心
8,…,SSCm的统一染色核心8。

说明书

一种自适应GPU统一染色阵列任务负载均衡方法

技术领域

本发明属于图形处理器设计领域,涉及一种自适应GPU统一染色阵列任务负载均
衡的方法。

背景技术

图形处理器(Graphic Process Unit,GPU)是现代计算机硬件的重要组成部分,是
进行图形绘制、处理和显示的关键部件,普遍存在于工作站、个人电脑、笔记本、手机以及各
类需进行图形显示的系统中。GPU负责产生2D和3D的图形、图像和视频,以支持基于窗口的
操作系统、图形用户界面、视频游戏、可视化图像应用和视频播放等可视化计算。GPU流水线
高速、并行的特征和灵活的可编程能力,为图形处理和通用并行计算提供了良好的运行平
台。

研制具有自主知识产权的图形处理器芯片已迫在眉睫,自适应GPU统一染色阵列
任务负载均衡方法作为统一染色GPU的关键和核心,对其设计技术进行研究和突破已刻不
容缓。

发明内容

本发明的目的是:提供一种自适应GPU统一染色阵列任务负载均衡方法,突破统一
染色GPU统一染色阵列资源动态分配和负载均衡的关键技术。

本发明的技术解决方案是:

一种自适应GPU统一染色阵列任务负载均衡方法,包括:

实时产生GPU统一染色阵列的两种负载状态标识,以n个统一染色核心的当前状态
和任务类型为输入,根据设定的算法产生两种负载状态标识:idle vertex core(空闲顶点
核心),idle pixel core(空闲像素核心),将两种负载状态标识输出到步骤2;

判定是否需要执行资源分配操作,将步骤1实时统计的GPU统一染色阵列的两种负
载状态idle vertex core,idle pixel core为输入,依据预设的判定算法产生是否需要执
行资源分配操 作的判定标志,将判定标志和两种负载状态输出到步骤3;

步骤3、选择资源分配方案,依据步骤2输出的判定标志和两种负载状态idle
vertex core,idle pixel core作为输入,如果需要执行资源分配,则使用设定的算法判定
系统性能瓶颈的类型,根据性能瓶颈的类型选择资源分配方案,将资源分配方案输出到步
骤4,否则,结束流程;

步骤4、实施资源分配与映射,以步骤3输出的资源分配方案作为控制条件,使用宽
度优先的空闲统一染色核心查询算法选择1个空闲的core,将统一染色核心分配给指定的
染色任务。

具体的,n的取值为2-80的整数。

步骤1中所述设定的算法具体为:

Idle vertex core:每个统一染色核心的状态包括:当前状态(idle\busy),任务
类型(vertex\Pixel);当某个核心的状态为idle&vertex,则该核心为空闲vertex核心;该
核心对应的标志位被置为1,根据n个核心标志位的值产生2bit的Idle vertex core;当n个
统一染色核心的标识位全部为0,Idle vertex core为00,00表示GPU存在0个vertex类型的
空闲统一染色核心;当n个统一染色核心的标识位有1个为1,Idle vertex core为01,01表
示GPU存在1个vertex类型的空闲统一染色核心;当n个统一染色核心的标识位既不是全部
为0并且不是只有1个统一染色核心的标识位为1,Idle vertex core为10,10表示GPU存在2
个及以上vertex类型的空闲统一染色核心;Idle vertex core为11无意义;

Idle pixel core:当某个统一染色核心的状态为idle&pixel,则该统一染色核心
为空闲pixel core;该统一染色核心对应的标志位被置为1,根据n个统一染色核心标志位
的值产生2bit的Idle pixel core;当n个统一染色核心的标识位全部为0,Idle pixel
core为00,00表示GPU存在0个pixel类型的空闲统一染色核心;当n个统一染色核心的标识
位有1个为1,Idle pixel core为01,01表示GPU存在1个pixel类型的空闲统一染色核心;当
n个统一染色核心的标识位既不是全部为0并且不是只有1个统一染色核心的标识位为1,
Idle pixel core为10,10表示GPU存在2个及以上pixel类型的空闲统一染色核心;Idle
pixel core为11无意义。

步骤2中所述预设的判定算法具体为:

以负载状态标识Idle vertex core和Idle pixel core为输入,当Idle vertex
core不为00,并且Idle pixel core不为00,说明系统不存在性能瓶颈,不执行负载均衡操
作,否则,资源映射与分配单元可能需要执行资源分配操作。

步骤3中所述设定的算法具体为:

依据Idle vertex core和Idle pixel core的值,能够实施负载均衡操作的情况
包括:

当Idle vertex core为00,存在0个空闲vertex核心,Idle pixel core为10,存在
2个及以上空闲pixel核,总体上系统存在2个及以上空闲统一染色核心,并且为pixel类型
的,说明pixel负载较vertex负载轻,资源分配方案:将1个空闲pixel core送给vertex任
务;

当Idle vertex core为01,存在1个空闲vertex核心,Idle pixel core为0,存在0
个空闲pixel核心,总体上系统仅存在1个空闲统一染色核心,为了确保GPU流水线的通畅
性,将该空闲统一染色核心给pixel任务使用,资源分配方案:将1个空闲vertex core送给
pixel任务;

当Idle vertex core为10,存在2个及以上空闲vertex核心,Idle pixel core为
0,存在0个空闲pixel核心,总体上系统存在“2个及以上”的空闲统一染色核心,说明vertex
负载较pixel负载轻,将1个空闲统一染色核心送给pixel任务使用,资源分配方案:将1个空
闲vertex core送给pixel任务;

依据Idle vertex core和Idle pixel core的值,不实施负载均衡操作的情况包
括:

当Idle vertex core不为0,并且Idle pixel core不为0,系统处于负载均衡状
态,不执行资源分配与映射操作;当Idle vertex core为0,并且Idle pixel core为0,则系
统无法实施负载均衡,无需执行资源分配与映射操作;

当Idle vertex core为0,并且Idle pixel core为01,系统仅存在1个空闲统一染
色核心,并且为pixel类型的,为了确保GPU流水线的通畅性,该空闲统一染色核心给pixel
任务使用。为了确保GPU流水线不进入死锁状态,不允许执行负载均衡,无需执行资源分配
与映射操作。

步骤4中所述宽度优先的空闲统一染色核心查询算法具体为:

如果GPU统一染色阵列具m个SSC,每个SSC具有8个统一染色核心,m*8等于n,m个
SSC优先级从高到低依次为:SSC1,SSC2,SSC3,SSC4,SSC5,…,SSCm;n个统一染色核心的优
先级顺序从高到低依次为:SSC1的统一染色核心1,SSC2的统一染色核心1,SSC3的统一染色
核心1,SSC4的统一染色核心1,…,SSCm的统一染色核心1,SSC1的统一染色核心2,SSC2的统
一染色核心2,SSC3的统一染色核心2,SSC4的统一染色核心2,…,SSCm的统一染色核心
2,…,SSC1的统一染色核心8,SSC2的统一染色核心8,SSC3的统一染色核心8,SSC4的统一染
色核心8,…,SSCm的统一染色核心8。

本发明的技术效果是:

1、本发明涉及一种自适应GPU统一染色阵列任务负载均衡方法,包括:步骤1、实时
统计统一染色阵列n个统一染色核心的负载状态;步骤2、判定是否需要执行资源分配操作。
步骤3、根据系统性能瓶颈的类型自适应的选择资源分配方案;步骤4、使用宽度优先的空闲
统一染色核查找算法实施资源映射。以上四方面的特征使得GPU统一染色阵列任务负载均
衡方法能够实现自适应的任务负载均衡功能。

2、自适应GPU统一染色阵列任务负载均衡方法的基本功能包括:产生负载状态标
志;判定性能瓶颈类型;选择资源分配方案;实施资源映射。

3、本发明突破了图形处理器设计中自适应GPU统一染色阵列任务负载均衡方法的
设计技术,可用于国产图形处理器芯片的研制。

附图说明:

图1是本发明自适应GPU统一染色阵列任务负载均衡方法的整体框图,包含:步骤
1,实时统计n个统一染色核心的负载状态;步骤2,判定统一染色资源是否负载均衡;步骤3,
根据负载状态自适应的选择资源分配方案;步骤4,资源分配与映射操作。

具体实施方式:

下面结合附图和具体实施例,对本发明的技术方案进行清楚、完整地表述。显然,
所表述的实施例仅是本发明一部分实施例,而不是全部的实施例,基于本发明中的实施例,
本领域技术人员在没有做出创造性劳动前提所获得的所有其他实施例,都属于本发明的保
护范围。

一种自适应GPU统一染色阵列任务负载均衡方法,包括:

实时产生GPU统一染色阵列的两种负载状态标识,以n个统一染色核心的当前状态
和任务类型为输入,根据设定的算法产生两种负载状态标识:idle vertex core(空闲顶点
核心),idle pixel core(空闲像素核心),将两种负载状态标识输出到步骤2;

判定是否需要执行资源分配操作,将步骤1实时统计的GPU统一染色阵列的两种负
载状态idle vertex core,idle pixel core为输入,依据预设的判定算法产生是否需要执
行资源分配操作的判定标志,将判定标志和两种负载状态输出到步骤3;

步骤3、选择资源分配方案,依据步骤2输出的判定标志和两种负载状态idle
vertex core,idle pixel core作为输入,如果需要执行资源分配,则使用设定的算法判定
系统性能瓶颈的类型,根据性能瓶颈的类型选择资源分配方案,将资源分配方案输出到步
骤4,否则,结束流程;

步骤4、实施资源分配与映射,以步骤3输出的资源分配方案作为控制条件,使用宽
度优先的空闲统一染色核心查询算法选择1个空闲的core,将统一染色核心分配给指定的
染色任务。

具体的,n的取值为2-80的整数。

步骤1中所述设定的算法具体为:

Idle vertex core:每个统一染色核心的状态包括:当前状态(idle\busy),任务
类型(vertex\Pixel);当某个核心的状态为idle&vertex,则该核心为空闲vertex核心;该
核心对应的标志位被置为1,根据n个核心标志位的值产生2bit的Idle vertex core;当n个
统一染色核心的标识位全部为0,Idle vertex core为00,00表示GPU存在0个vertex类型的
空闲统一染色核心;当n个统一染色核心的标识位有1个为1,Idle vertex core为01,01表
示GPU存在1个vertex类型的空闲统一染色核心;当n个统一染色核心的标识位既不是全部
为0并且不是只有1个统一染色核心的标识位为1,Idle vertex core为10,10表示GPU存在2
个及以上vertex类型的空闲统一染色核心;Idle vertex core为11无意义;

Idle pixel core:当某个统一染色核心的状态为idle&pixel,则该统一染色核心
为空闲pixel core;该统一染色核心对应的标志位被置为1,根据n个统一染色核心标志位
的值产生2bit的Idle pixel core;当n个统一染色核心的标识位全部为0,Idle pixel
core为00,00表示GPU存在0个pixel类型的空闲统一染色核心;当n个统一染色核心的标识
位有1个为1,Idle pixel core为01,01表示GPU存在1个pixel类型的空闲统一染色核心;当
n个统一染色核心的标识位既不是全部为0并且不是只有1个统一染色核心的标识位为1,
Idle pixel core为10,10表示GPU存在2个及以上pixel类型的空闲统一染色核心;Idle
pixel core为11无意义。

步骤2中所述预设的判定算法具体为:

以负载状态标识Idle vertex core和Idle pixel core为输入,当Idle vertex
core不为00,并且Idle pixel core不为00,说明系统不存在性能瓶颈,不执行负载均衡操
作,否则,资源映射与分配单元可能需要执行资源分配操作。

步骤3中所述设定的算法具体为:

依据Idle vertex core和Idle pixel core的值,能够实施负载均衡操作的情况
包括:

当Idle vertex core为00,存在0个空闲vertex核心,Idle pixel core为10,存在
2个及以上空闲pixel核,总体上系统存在2个及以上空闲统一染色核心,并且为pixel类型
的,说明pixel负载较vertex负载轻,资源分配方案:将1个空闲pixel core送给vertex任
务;

当Idle vertex core为01,存在1个空闲vertex核心,Idle pixel core为0,存在0
个空闲pixel核心,总体上系统仅存在1个空闲统一染色核心,为了确保GPU流水线的通畅
性,将该空闲统一染色核心给pixel任务使用,资源分配方案:将1个空闲vertex core送给
pixel任务;

当Idle vertex core为10,存在2个及以上空闲vertex核心,Idle pixel core为
0,存在0个空闲pixel核心,总体上系统存在“2个及以上”的空闲统一染色核心,说明vertex
负载较pixel负载轻,将1个空闲统一染色核心送给pixel任务使用,资源分配方案:将1个空
闲vertex core送给pixel任务;

依据Idle vertex core和Idle pixel core的值,不实施负载均衡操作的情况包
括:

当Idle vertex core不为0,并且Idle pixel core不为0,系统处于负载均衡状
态,不执行资源分配与映射操作;当Idle vertex core为0,并且Idle pixel core为0,则系
统无法实施负载均衡,无需执行资源分配与映射操作;

当Idle vertex core为0,并且Idle pixel core为01,系统仅存在1个空闲统一染
色核心,并且为pixel类型的,为了确保GPU流水线的通畅性,该空闲统一染色核心给pixel
任务使用。为了确保GPU流水线不进入死锁状态,不允许执行负载均衡,无需执行资源分配
与映射操作。

步骤4中所述宽度优先的空闲统一染色核心查询算法具体为:

如果GPU统一染色阵列具m个SSC,每个SSC具有8个统一染色核心,m*8等于n,m个
SSC优先级从高到低依次为:SSC1,SSC2,SSC3,SSC4,SSC5,…,SSCm;n个统一染色核心的优
先级顺序从高到低依次为:SSC1的统一染色核心1,SSC2的统一染色核心1,SSC3的统一染色
核心1,SSC4的统一染色核心1,…,SSCm的统一染色核心1,SSC1的统一染色核心2,SSC2的统
一染色核心2,SSC3的统一染色核心2,SSC4的统一染色核心2,…,SSCm的统一染色核心
2,…,SSC1的统一染色核心8,SSC2的统一染色核心8,SSC3的统一染色核心8,SSC4的统一染
色核心8,…,SSCm的统一染色核心8。

实施例

如图1所示,自适应GPU统一染色阵列任务负载均衡方法的整体框图,包含:包括:
步骤1、实时统计n个统一染色核心的负载状态;步骤2、是否需要执行资源分配操作;步骤3、
选择资源分配方案;步骤4、资源分配与映射。

下面详细介绍每个步骤的具体功能和算法:

1、步骤1:实时统计n个统一染色核心的负载状态。为自适应GPU统一染色阵列任务
负载均衡方法提供输入数据,实时统计GPU统一染色资源的负载状态,产生Idle vertex
core和Idle pixel core两种负载状态标识,具体定义如下。

1.1、Idle vertex core:每个统一染色核心的状态包括:当前状态(idle\busy),
任务类型(vertex\Pixel)。当某个核心的状态为idle&vertex,则该核心为空闲vertex核
心。该核心对应的标志位被置为1,根据n个核心标志位的值产生2bit的Idle vertex core。
当n个统一染色 核心的标识位全部为0,Idle vertex core为00,00表示GPU存在0个vertex
类型的空闲统一染色核心;当n个统一染色核心的标识位有1个为1,Idle vertex core为
01,01表示GPU存在1个vertex类型的空闲统一染色核心;当n个统一染色核心的标识位既不
是全部为0并且不是只有1个统一染色核心的标识位为1,Idle vertex core为10,10表示
GPU存在2个及以上vertex类型的空闲统一染色核心;Idle vertex core为11无意义。

1.2、Idle pixel core:当某个统一染色核心的状态为idle&pixel,则该统一染色
核心为空闲pixel core。该统一染色核心对应的标志位被置为1,根据n个统一染色核心标
志位的值产生2bit的Idle pixel core。当n个统一染色核心的标识位全部为0,Idle pixel
core为00,00表示GPU存在0个pixel类型的空闲统一染色核心;当n个统一染色核心的标识
位有1个为1,Idle pixel core为01,01表示GPU存在1个pixel类型的空闲统一染色核心;当
n个统一染色核心的标识位既不是全部为0并且不是只有1个统一染色核心的标识位为1,
Idle pixel core为10,10表示GPU存在2个及以上pixel类型的空闲统一染色核心;Idle
pixel core为11无意义。

2、步骤2:判定系统是否需要实施资源分配。以负载状态标识Idle vertex core和
Idle pixel core为输入,当Idle vertex core不为00,并且Idle pixel core不为00,说明
系统不存在性能瓶颈,不执行负载均衡操作,否则,资源映射与分配单元可能需要执行资源
分配操作,进入步骤3。

3、步骤3:选择资源分配方案。系统可能需要实施负载均衡,根据性能瓶颈的类型
自适应的选择资源分配方案。依据Idle vertex core和Idle pixel core的值,能够实施负
载均衡操作的情况包括:当Idle vertex core为00,存在0个空闲vertex核心,Idle pixel
core为10,存在2个及以上空闲pixel核,总体上系统存在2个及以上空闲统一染色核心,并
且为pixel类型的,说明pixel负载较vertex负载轻。资源分配方案:将1个空闲pixel core
送给vertex任务;当Idle vertex core为01,存在1个空闲vertex核心,Idle pixel core为
0,存在0个空闲pixel核心,总体上系统仅存在1个空闲统一染色核心,为了确保GPU流水线
的通畅性,将该空闲统一染色核心给pixel任务使用。资源分配方案:将1个空闲vertex
core送给pixel任务;当Idle vertex core为10,存在2个及以上空闲vertex核心,Idle
pixel core为0,存在0个空闲pixel核心,总体上系统存在“2个及以上”的空闲统一染色核
心,说明vertex负载较pixel负载轻,将1个空闲统一染色核心送给pixel任务使用。资源分
配方案:将1个空闲vertex core送给pixel任务。依据Idle vertex core和Idle pixel
core的值,不实施负载均衡操作的情况包括:当Idle vertex core不为0,并且Idle pixel
core不为0,系统处于负载均衡状态,不执行资源分 配与映射操作;当Idle vertex core为
0,并且Idle pixel core为0,则系统无法实施负载均衡,无需执行资源分配与映射操作;当
Idle vertex core为0,并且Idle pixel core为01,系统仅存在1个空闲统一染色核心,并
且为pixel类型的,为了确保GPU流水线的通畅性,该空闲统一染色核心给pixel任务使用。
为了确保GPU流水线不进入死锁状态,不允许执行负载均衡,无需执行资源分配与映射操
作。

4、步骤4:资源分配与映射。依据步骤3输出的资源分配方案,当GPU需要为pixel任
务增加统一染色资源,则按照宽度优先的方法执行空闲统一染色核心查询操作,将第1个
idle状态的Vertex Core作为资源映射的对象,将此统一染色核心的状态修改为Pixel&
idle。当GPU需要为Vertex任务增加统一染色资源,则按照宽度优先方法执行空闲统一染色
核心查询操作,将第1个idle状态的Pixel Core作为资源映射的对象,将此统一染色核心的
状态修改为Vertex&idle。宽度优先的资源映射算法的描述如下:如果GPU统一染色阵列具m
个SSC,每个SSC具有8个统一染色核心,m*8等于n,m个SSC优先级从高到低依次为:SSC1,
SSC2,SSC3,SSC4,SSC5,…,SSCm。在宽度优先的资源映射方法中,n个统一染色核心的优先
级顺序从高到低依次为:SSC1的统一染色核心1,SSC2的统一染色核心1,SSC3的统一染色核
心1,SSC4的统一染色核心1,…,SSCm的统一染色核心1,SSC1的统一染色核心2,SSC2的统一
染色核心2,SSC3的统一染色核心2,SSC4的统一染色核心2,…,SSCm的统一染色核心2,…,
SSC1的统一染色核心8,SSC2的统一染色核心8,SSC3的统一染色核心8,SSC4的统一染色核
心8,…,SSCm的统一染色核心8。宽度优先资源映射算法能使同一类染色任务均匀分布在m
个SSC中,最大限度的提高同一类染色任务的并行度,使得GPU取得高性能。在资源分配阶
段,宽度优先资源映射算法使得每个SSC既具有Vertex类型的统一染色核心,也具有pixel
类型的统一染色核心,能够支持SSC内部染色任务的交错执行,隐藏长存储器访问延迟,提
高统一染色核心的计算资源利用率。

最后应说明的是,以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管
参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解;其依然可
以对前述各实施例记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而
这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范
围。

关 键 词:
一种 自适应 GPU 统一 染色 阵列 任务 负载 均衡 方法
  专利查询网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
太阳城集团本文
本文标题:一种自适应GPU统一染色阵列任务负载均衡方法.pdf
链接地址:http://zh228.com/p-6019572.html
太阳城集团我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服客服 - 联系我们

copyright@ 2017-2018 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备17046363号-1 
 


收起
展开
葡京赌场|welcome document.write ('');